Phase diagram of Mn10Al2C; e_above_hull: 0.164387 eV/atom; predicted_stable: False
Phase diagram of FeCoNiBiS; e_above_hull: 0.293533 eV/atom; predicted_stable: False
Phase diagram of GaFe2CoN; e_above_hull: 0.104656 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -35.9396 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoGaN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoGaN)
Phase diagram of Fe4CoSiB2; e_above_hull: 0.418971 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.4669 eV; energy change = -0.0040 eV; symmetry: P4/mmm → P4/mmm
Fe4CoSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe2CoSiB; e_above_hull: 1.178294 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.3961 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe3CoBN; e_above_hull: 0.647454 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -46.3235 eV; energy change = -0.9789 eV; symmetry: P4mm → P4mm
Fe3CoBN (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe4Co2SiN; e_above_hull: 0.651803 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.0970 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe4Co2SiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe2CoN; e_above_hull: 0.160853 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.3849 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoMnN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoMnN)
Phase diagram of MnFe4CoSi2; e_above_hull: 0.024892 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -63.4879 eV; energy change = -0.0030 eV; symmetry: P-4m2 → P-4m2
Fe4CoMnSi2 (space group: P-4m2 #115, crystal system: tetragonal, point group: -42m) (missed expected composition: Fe4CoMnSi2)
FeBiNiCoS (space group: P3m1 #156, crystal system: trigonal, point group: 3m) (missed expected composition: FeBiNiCoS)
Phase diagram of Mn2GaFeN; e_above_hull: 0.027101 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.1793 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Mn2FeGaN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Mn2FeGaN)
Phase diagram of Fe2CoBN; e_above_hull: 0.942680 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.0232 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoBN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCoNiB3; e_above_hull: 1.055893 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.0721 eV; energy change = -9.6244 eV; symmetry: P4mm → P4mm
FeCoNiB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: FeCoNiB2)
Phase diagram of AlFe2Ni; e_above_hull: 0.112195 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2429 eV; energy change = -0.0137 eV; symmetry: Pmm2 → Pmm2
Fe2NiAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2NiAl)
Phase diagram of Fe2CoSiN; e_above_hull: 0.400767 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.1441 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of AlFe2CoN; e_above_hull: 0.351961 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.2739 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoAlN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoAlN)
Phase diagram of Fe2CoBN; e_above_hull: 0.942691 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.0231 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoBN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -35.9395 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoGaN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoGaN)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9546 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3CoNC (space group: Pm-3m #221, crystal system: cubic, point group: m-3m) (missed expected composition: Fe3CoNC)
Phase diagram of AlFe2CoN; e_above_hull: 0.351969 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.2739 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoAlN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoAlN)
Phase diagram of MnFe2CoN; e_above_hull: 0.160893 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.3847 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnCoN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnCoN)
Phase diagram of Fe2CoSi; e_above_hull: 0.172321 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1488 eV; energy change = -0.0290 eV; symmetry: Pmm2 → Pmm2
Fe2CoSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeCo2Si; e_above_hull: 0.163155 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8715 eV; energy change = -0.0008 eV; symmetry: Pmm2 → Pmm2
Co2FeSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Co2FeSi)
Phase diagram of MnAlFe2; e_above_hull: 0.090195 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1205 eV; energy change = -0.0098 eV; symmetry: Pmm2 → Pmm2
Fe2MnAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2MnAl)
Phase diagram of Fe2CoSiB; e_above_hull: 1.178378 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.3957 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe3CoN; e_above_hull: 0.096227 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.7103 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3CoN (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe2NiB; e_above_hull: 0.396654 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8089 eV; energy change = -0.1254 eV; symmetry: Pmm2 → Pmm2
Fe2NiB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2CoNiN; e_above_hull: 0.121790 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.9378 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoNiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe3CoB; e_above_hull: 0.668074 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -45.5144 eV; energy change = -0.4060 eV; symmetry: P-6m2 → P-6m2
Fe3CoMnB (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2) (missed expected composition: Fe3CoMnB)
Phase diagram of Fe2CoB; e_above_hull: 0.370850 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1664 eV; energy change = -0.0483 eV; symmetry: Pmm2 → Pmm2
Fe2CoB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnFe2CoSi; e_above_hull: 1.666052 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -12.4833 eV; energy change = -0.0103 eV; symmetry: P4/mmm → P4/mmm
Fe2CoMnSi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoMnSi)
Phase diagram of TiFe2CoN; e_above_hull: 0.483543 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.3992 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoTiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoTiN)
Phase diagram of MnFe3CoB2; e_above_hull: 0.362390 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -54.4742 eV; energy change = -38.3117 eV; symmetry: Pm → Pm
Fe3CoMnB2 (space group: Pm #6, crystal system: monoclinic, point group: m) (missed expected composition: Fe3CoMnB2)
Phase diagram of AlFe2Co4B; e_above_hull: 0.186440 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -56.5494 eV; energy change = -0.0007 eV; symmetry: P4/mmm → P4/mmm
Co4Fe2AlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Co4Fe2AlB)
Phase diagram of Mn2AlFeC; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.6336 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Mn2FeAlC (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Mn2FeAlC)
Phase diagram of Fe4CoSiB2; e_above_hull: 0.418959 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.4670 eV; energy change = -0.0041 eV; symmetry: P4/mmm → P4/mmm
Fe4CoSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe3CoN; e_above_hull: 0.096231 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.7103 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3CoN (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe2CoSiB; e_above_hull: 1.178401 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.3957 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of TiFe2CoN; e_above_hull: 0.483487 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.3994 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoTiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoTiN)
Phase diagram of Fe4CoSiB2; e_above_hull: 0.418959 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.4671 eV; energy change = -0.0042 eV; symmetry: P4/mmm → P4/mmm
Fe4CoB2Si (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4CoB2Si)
Phase diagram of MnCo2Si; e_above_hull: 0.229289 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.5606 eV; energy change = -0.0047 eV; symmetry: Pmm2 → Pmm2
Co2MnSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Co2MnSi)
Phase diagram of MnFe2CoB; e_above_hull: 0.480942 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.6230 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoMnB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoMnB)
Phase diagram of MnFeCoSi; e_above_hull: 6.984988 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -3.7081 eV; energy change = -134.3390 eV; symmetry: P4mm → P4/mmm
CoFeMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: CoFeMnSi)
Phase diagram of MnFe2CoSi; e_above_hull: 1.685811 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.6737 eV; energy change = -19.1982 eV; symmetry: P4/mmm → Pm
Fe2CoMnSi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoMnSi)
Phase diagram of Fe5B2P; e_above_hull: 0.400309 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9992 eV; energy change = -0.0493 eV; symmetry: P4/mmm → P4/mmm
Fe5PB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe5PB2)
Phase diagram of Fe4CoB2P; e_above_hull: 0.404030 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.7835 eV; energy change = -18.0678 eV; symmetry: Pm → Pm
Fe4CoB2P (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of Fe2CoSiN; e_above_hull: 0.400746 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.1442 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe2CoSiB; e_above_hull: 1.178296 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.3961 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe3Si; e_above_hull: 1.230595 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -35.0915 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3MnSi (space group: Pm-3m #221, crystal system: cubic, point group: m-3m) (missed expected composition: Fe3MnSi)
Phase diagram of Fe4CoB2P; e_above_hull: 0.404065 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.7834 eV; energy change = -18.0683 eV; symmetry: Pm → Pm
Fe4CoPB2 (space group: Pm #6, crystal system: monoclinic, point group: m) (missed expected composition: Fe4CoPB2)
Phase diagram of Fe3CoSiN3; e_above_hull: 1.510628 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -53.8882 eV; energy change = -3.3769 eV; symmetry: Pm-3m → R3
Fe3CoSiN (space group: Pm-3m #221, crystal system: cubic, point group: m-3m) (missed expected composition: Fe3CoSiN)
Phase diagram of AlFeCo4B; e_above_hull: 0.487743 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -46.0499 eV; energy change = -0.4070 eV; symmetry: P4/mmm → P4/mmm
Co2FeAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Co2FeAlB)
Phase diagram of MnAlNi2; e_above_hull: 0.149686 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.4745 eV; energy change = -0.0093 eV; symmetry: Pmm2 → Pmm2
Ni2MnAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Ni2MnAl)
Phase diagram of MnFeCoSi; e_above_hull: 0.182021 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -22.4133 eV; energy change = -153.0450 eV; symmetry: P4mm → P1
CoFeMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: CoFeMnSi)
Phase diagram of Mn2GaFeCo; e_above_hull: 0.984798 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.5813 eV; energy change = -0.2419 eV; symmetry: P-4m2 → P-4m2
Mn2FeCoGa (space group: P-4m2 #115, crystal system: tetragonal, point group: -42m) (missed expected composition: Mn2FeCoGa)
Phase diagram of ZrFe2CoB2; e_above_hull: 0.687856 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -44.9245 eV; energy change = -7.4877 eV; symmetry: P4mm → P4mm
Fe2CoZrB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2CoZrB2)
Phase diagram of Fe4CoSiB2; e_above_hull: 0.418976 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.4669 eV; energy change = -0.0042 eV; symmetry: P4/mmm → P4/mmm
Fe4CoSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of ZrFe10Co2N; e_above_hull: 0.681029 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -109.7502 eV; energy change = -9.8694 eV; symmetry: P-1 → P1
Fe10Co2ZrN (space group: P-1 #2, crystal system: triclinic, point group: -1) (missed expected composition: Fe10Co2ZrN)
Phase diagram of Fe2CoB; e_above_hull: 0.370814 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1663 eV; energy change = -0.0482 eV; symmetry: Pmm2 → Pmm2
Fe2CoB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnAlFeCo; e_above_hull: 0.107970 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1585 eV; energy change = -0.0152 eV; symmetry: P4mm → P4mm
FeCoMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: FeCoMnAl)
Phase diagram of Fe4CoSiB2; e_above_hull: 0.418972 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.4669 eV; energy change = -0.0040 eV; symmetry: P4/mmm → P4/mmm
Fe4CoSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of TiFe4CoB2; e_above_hull: 0.452247 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.8767 eV; energy change = -0.0033 eV; symmetry: P4/mmm → P4/mmm
Fe4CoTiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4CoTiB2)
Phase diagram of MnFe2CoB; e_above_hull: 0.480940 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.6230 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoMnB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoMnB)
Phase diagram of FeCo2Si; e_above_hull: 0.163211 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8717 eV; energy change = -0.0010 eV; symmetry: Pmm2 → Pmm2
Co2FeSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Co2FeSi)
Phase diagram of VFe2CoN; e_above_hull: 0.488005 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.4554 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoVN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoVN)
Phase diagram of TiFe2CoB; e_above_hull: 1.246198 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.5083 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoTiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoTiB)
Phase diagram of ZrFe5Co2B; e_above_hull: 0.289743 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -142.6487 eV; energy change = -14.9165 eV; symmetry: Imm2 → P1
ZrFe10Co2B (space group: Imm2 #44, crystal system: orthorhombic, point group: mm2) (missed expected composition: ZrFe10Co2B)
Phase diagram of CrFe2CoB; e_above_hull: 0.575422 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.6635 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoCrB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoCrB)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -12.4775 eV; energy change = -0.0033 eV; symmetry: P4/mmm → P4/mmm
Fe2CoMnSi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoMnSi)
Phase diagram of FeCo; e_above_hull: 0.157958 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of Fe2CoB; e_above_hull: 0.370826 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1662 eV; energy change = -0.0480 eV; symmetry: Pmm2 → Pmm2
Fe2CoB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2CoBN; e_above_hull: 0.942701 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -37.0231 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoBN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of AlFe2CoB; e_above_hull: 1.069320 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.2344 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoAlB)
Phase diagram of Fe2CoGe; e_above_hull: 0.148068 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.5767 eV; energy change = -0.0558 eV; symmetry: Pmm2 → Pmm2
Fe2CoGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnGaFe2B; e_above_hull: 0.287656 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -35.7654 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnGaB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnGaB)
Phase diagram of Fe2CoSiN; e_above_hull: 0.400791 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.1440 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoSiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe2CoSi; e_above_hull: 0.172328 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1489 eV; energy change = -0.0291 eV; symmetry: Pmm2 → Pmm2
Fe2CoSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of CrFe2CoB; e_above_hull: 0.575414 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.6635 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoCrB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoCrB)
Phase diagram of ZrFe2CoB2; e_above_hull: 0.687866 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -44.9244 eV; energy change = -7.4877 eV; symmetry: P4mm → P4mm
Fe2CoZrB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2CoZrB2)
Phase diagram of TiFe2CoN; e_above_hull: 0.483523 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.3993 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoTiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2CoTiN)
Phase diagram of CrFe4Co2B; e_above_hull: 0.280162 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -63.4603 eV; energy change = -0.0714 eV; symmetry: P4/mmm → P4/mmm
Fe4Co2CrB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4Co2CrB)
Fe2NiMnB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2NiMnB)
Fe2NiMnB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2NiMnB)
Phase diagram of Fe3NiN; e_above_hull: 0.039313 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.6946 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3NiN (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of MnAlFe2B; e_above_hull: 0.245241 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9687 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnAlB)
FeCrMnB (space group: P3m1 #156, crystal system: trigonal, point group: 3m) (missed expected composition: FeCrMnB)
Phase diagram of MnFe2SiNi; e_above_hull: 1.344943 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 162.4291 eV; energy change = -54964.1490 eV; symmetry: P4mm → P1
Fe2NiMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2NiMnSi)
Phase diagram of MnVFe2B; e_above_hull: 0.599987 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.5325 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnVB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnVB)
Phase diagram of MnFe2NiB; e_above_hull: 1.133731 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.0579 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnNiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnNiB)
Fe2MnAlB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2MnAlB2)
Phase diagram of Fe2B; e_above_hull: 0.334329 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.5281 eV; energy change = -0.0667 eV; symmetry: P-3m1 → P-3m1
Fe2B (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of MnAlFe2B; e_above_hull: 0.245243 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9687 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnAlB)
Phase diagram of MnAlFe2B; e_above_hull: 0.245229 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9688 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnAlB)
Phase diagram of MnAlFeSi; e_above_hull: 2.444118 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -18.6296 eV; energy change = -0.1006 eV; symmetry: P4mm → P4mm
FeMnAlSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: FeMnAlSi)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.12 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -19.0947 eV; energy change = -0.0457 eV; symmetry: P3m1 → P3m1
Chemeleon generated TiSeS crystal (space group: P1 #1, crystal system: triclinic, point group: 1) (missed requested crystal system: hexagonal)
Chemeleon generated TiSeS crystal (space group: P1 #1, crystal system: triclinic, point group: 1) (missed requested crystal system: trigonal)
Relaxed with Orb v3; 0.0 eV/Å threshold; final energy = -19.1108 eV; energy change = -0.0022 eV; symmetry: P3m1 → P3m1
Relaxed with Orb v3; 0.0 eV/Å threshold; final energy = -19.1109 eV; energy change = -0.0022 eV; symmetry: P3m1 → P3m1
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.17 THz
Phase diagram of TiSeS; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.18 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -0.74 THz
Relaxed with Orb v3; 0.02 eV/Å threshold; final energy = -25.5993 eV; energy change = -0.2897 eV; symmetry: P-3m1 → P-3m1
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -5.98 THz
Phase diagram of Fe5Si(NiN)2; e_above_hull: 0.577460 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 195.8108 eV; energy change = -41498.1736 eV; symmetry: P-4m2 → P1
Fe8Ni2SiN2 (space group: P-4m2 #115, crystal system: tetragonal, point group: -42m) (missed expected composition: Fe8Ni2SiN2)
Phase diagram of MnAlFe2N; e_above_hull: 0.511286 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -38.2883 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnAlN)
Phase diagram of MnAlFe2B; e_above_hull: 0.245243 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9687 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnAlB)
Phase diagram of Mn2Fe6SiB; e_above_hull: 0.692623 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -76.6075 eV; energy change = -20.4829 eV; symmetry: P4/mmm → P1
Fe6Mn2SiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe6Mn2SiB)
Phase diagram of MnFe2SiN; e_above_hull: 0.352881 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.2534 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnSiN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnSiN)
Phase diagram of MnAl(FeB)2; e_above_hull: 0.325171 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -43.5634 eV; energy change = -2.2162 eV; symmetry: P4mm → P4mm
Fe2MnAlB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2MnAlB2)
Fe4N (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of MnAlFe2B; e_above_hull: 0.245264 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9686 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2MnAlB)
Phase diagram of Fe5SiB2; e_above_hull: 0.376418 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9530 eV; energy change = -0.0141 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe8SiN; e_above_hull: 0.241533 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -162.0977 eV; energy change = -69.7470 eV; symmetry: P1 → P1
Fe14Si2N2 (space group: P1 #1, crystal system: triclinic, point group: 1) (missed expected composition: Fe14Si2N2)
Phase diagram of MnAl(FeC)3; e_above_hull: 1.374576 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -55.8286 eV; energy change = -4.4770 eV; symmetry: Pm-3m → P1
Fe3MnAlC (space group: Pm-3m #221, crystal system: cubic, point group: m-3m) (missed expected composition: Fe3MnAlC)
Phase diagram of AlFe12SiN; e_above_hull: 0.408540 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -116.6807 eV; energy change = -53.8135 eV; symmetry: P4/mmm → P1
Fe12SiAlN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe12SiAlN)
Phase diagram of AlFe2NiN; e_above_hull: 0.347237 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -35.9334 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2NiAlN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2NiAlN)
Phase diagram of MnAl(FeB)2; e_above_hull: 0.325152 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -43.5631 eV; energy change = -2.2160 eV; symmetry: P4mm → P4mm
Fe2MnAlB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2MnAlB2)
Phase diagram of MnFe4SiB2; e_above_hull: 0.442221 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2598 eV; energy change = -0.0028 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4MnSiB2)
Phase diagram of Fe8NiN; e_above_hull: 0.398212 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -156.2445 eV; energy change = -224.3877 eV; symmetry: P1 → P1
Fe14Ni2N2 (space group: P1 #1, crystal system: triclinic, point group: 1) (missed expected composition: Fe14Ni2N2)
Phase diagram of Fe3NiN; e_above_hull: 0.039367 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.6944 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3NiN (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe4N; e_above_hull: 0.047632 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -42.2029 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe4N (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe2NiB; e_above_hull: 0.396706 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8094 eV; energy change = -0.1259 eV; symmetry: Pmm2 → Pmm2
Fe2NiB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe5B2P; e_above_hull: 0.400274 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9998 eV; energy change = -0.0498 eV; symmetry: P4/mmm → P4/mmm
Fe5PB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe5PB2)
Phase diagram of Fe5SiB2; e_above_hull: 0.376478 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9525 eV; energy change = -0.0136 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of GaFe2Ni; e_above_hull: 0.090644 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.1274 eV; energy change = -0.0470 eV; symmetry: Pmm2 → Pmm2
Fe2NiGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2NiGa)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425564 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0938 eV; energy change = -0.0710 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4NiSiB2)
Phase diagram of TiFe4SiB2; e_above_hull: 0.409364 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.7109 eV; energy change = -0.0519 eV; symmetry: P4/mmm → P4/mmm
Fe4TiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4TiSiB2)
Phase diagram of MnFeSiNi; e_above_hull: 0.136493 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.7888 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeMnNiSi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm) (missed expected composition: FeMnNiSi)
Phase diagram of NbAl(Fe2B)2; e_above_hull: 0.488227 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.3214 eV; energy change = -0.0441 eV; symmetry: P4/mmm → P4/mmm
Fe4AlNbB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4AlNbB2)
Phase diagram of Fe2B; e_above_hull: 0.334302 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.5280 eV; energy change = -0.0666 eV; symmetry: P-3m1 → P-3m1
Fe2B (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of MnAl(FeB)2; e_above_hull: 0.325139 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -43.5636 eV; energy change = -2.2164 eV; symmetry: P4mm → P4mm
Fe2MnAlB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2MnAlB2)
Phase diagram of MnFe2B; e_above_hull: 0.458516 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.9599 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe2MnB (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm) (missed expected composition: Fe2MnB)
Phase diagram of AlFe5B2; e_above_hull: 0.242881 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.9518 eV; energy change = -0.5935 eV; symmetry: P4/mmm → P4/mmm
Fe5AlB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe5AlB2)
Phase diagram of GaFe3; e_above_hull: 0.253363 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.8844 eV; energy change = -0.0108 eV; symmetry: P-6m2 → P-6m2
Fe3Ga (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2) (missed expected composition: Fe3Ga)
Phase diagram of Fe5SiB2; e_above_hull: 0.376493 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9533 eV; energy change = -0.0144 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe3B; e_above_hull: 0.228978 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.0473 eV; energy change = -0.0036 eV; symmetry: P-6m2 → P-6m2
Fe3B (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of Fe2B; e_above_hull: 0.334326 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.5281 eV; energy change = -0.0667 eV; symmetry: P-3m1 → P-3m1
Fe2B (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of Fe2B; e_above_hull: 0.334312 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.5281 eV; energy change = -0.0668 eV; symmetry: P-3m1 → P-3m1
Fe2B (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of AlFe3Ni; e_above_hull: 1.195107 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1490 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3NiAl (space group: Pm-3m #221, crystal system: cubic, point group: m-3m) (missed expected composition: Fe3NiAl)
Phase diagram of FeNi; e_above_hull: 0.085333 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.1946 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnAlFe2; e_above_hull: 0.090303 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1204 eV; energy change = -0.0097 eV; symmetry: Pmm2 → Pmm2
Fe2MnAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2MnAl)
Phase diagram of AlFe2NiB2; e_above_hull: 0.571741 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.1711 eV; energy change = -3.3236 eV; symmetry: P4mm → Pmm2
Fe2NiAlB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2NiAlB2)
Phase diagram of ZrFe2Ni; e_above_hull: 0.180516 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.6740 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe2NiZr (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm) (missed expected composition: Fe2NiZr)
Phase diagram of Fe2NiGe; e_above_hull: 0.149732 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.3711 eV; energy change = -0.0401 eV; symmetry: Pmm2 → Pmm2
Fe2NiGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425551 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0947 eV; energy change = -0.0720 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4NiSiB2)
Phase diagram of Fe2SiNi; e_above_hull: 0.178304 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8504 eV; energy change = -0.0859 eV; symmetry: Pmm2 → Pmm2
Fe2NiSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2NiSi)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425550 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0937 eV; energy change = -0.0709 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4NiSiB2)
Phase diagram of Fe5SiB2; e_above_hull: 0.376495 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9532 eV; energy change = -0.0144 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe5SiB2; e_above_hull: 0.376499 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9532 eV; energy change = -0.0143 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of AlFe2Ni; e_above_hull: 0.112163 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2434 eV; energy change = -0.0141 eV; symmetry: Pmm2 → Pmm2
Fe2NiAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2NiAl)
Phase diagram of Fe2NiB; e_above_hull: 0.396670 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8092 eV; energy change = -0.1256 eV; symmetry: Pmm2 → Pmm2
Fe2NiB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe8N; e_above_hull: 1.507826 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -125.2035 eV; energy change = -0.2050 eV; symmetry: P6_3/mmc → P6_3/mmc
Fe16N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm) (missed expected composition: Fe16N2)
Phase diagram of Fe3Si; e_above_hull: 0.280381 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.9215 eV; energy change = -0.0014 eV; symmetry: P-6m2 → P-6m2
Fe3Si (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of CrFe4SiB2; e_above_hull: 0.468666 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.6331 eV; energy change = -0.1446 eV; symmetry: P4/mmm → P4/mmm
Fe4CrSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4CrSiB2)
Phase diagram of MnFe2Ge; e_above_hull: 0.118766 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.5628 eV; energy change = -0.0125 eV; symmetry: Pmm2 → Pmm2
Fe2MnGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2MnGe)
Phase diagram of MnFe2B; e_above_hull: 0.458498 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.9600 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe2MnB (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm) (missed expected composition: Fe2MnB)
Phase diagram of MnFe2Si; e_above_hull: 0.169170 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.1351 eV; energy change = -0.0207 eV; symmetry: Pmm2 → Pmm2
Fe2MnSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2MnSi)
Phase diagram of Fe5SiB2; e_above_hull: 0.376392 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9531 eV; energy change = -0.0144 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnCrFeCo; e_above_hull: 37.578279 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 120.4432 eV; energy change = 1.7587 eV; symmetry: P3m1 → P1
MnFeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m) (missed expected composition: MnFeCoCr)
Phase diagram of AlFe2Ni; e_above_hull: 0.112126 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2433 eV; energy change = -0.0141 eV; symmetry: Pmm2 → Pmm2
Fe2NiAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Fe2NiAl)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -107.3938 eV; energy change = -31.0977 eV; symmetry: P4/mmm → P4/mmm
Mn12Al2C (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Mn12Al2C)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -141.6875 eV; energy change = -36.2137 eV; symmetry: P4/mmm → P1
Mn14Al2C (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnAlC; e_above_hull: 0.520723 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -163.1270 eV; energy change = -0.0655 eV; symmetry: C2/m → C2/m
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -84.3190 eV; energy change = 0.0000 eV; symmetry: F-43m → F-43m
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -131.4364 eV; energy change = -0.0041 eV; symmetry: R-3m → R-3m
8 generated crystal structures for the chemical system Mn-Al-C
MatterGen generated Mn2AlC crystal (space group: P1 #1, crystal system: triclinic)
Phase diagram of FeN; e_above_hull: 0.993801 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.0397 eV; energy change = 0.0007 eV; symmetry: P4/mmm → P4/mmm
Chemeleon generated FeN crystal (space group: P1 #1, crystal system: triclinic, point group: 1) (missed requested crystal system: orthorhombic)
1 crystal structures generated from text: Rare earth free permanent magnet
MatterGen generated Fe2GeS4 crystal (space group: P1 #1, crystal system: triclinic)
MatterGen generated FeGe2 crystal (space group: P1 #1, crystal system: triclinic)
Phase diagram of Mn2GaFe; e_above_hull: 0.049479 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.07 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.8719 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
MatterGen generated Mn2GaFe crystal (space group: Pm #6, crystal system: monoclinic)
MatterGen generated Ta4ZnFe crystal (space group: P1 #1, crystal system: triclinic)
Phase diagram of MnGaFe2; e_above_hull: 0.091340 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.15 THz
Phase diagram of MnGaFe4; e_above_hull: 0.566652 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -2.62 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1189 eV; energy change = -0.0148 eV; symmetry: Pmm2 → Pmm2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -43.0382 eV; energy change = -0.6357 eV; symmetry: P4/mmm → P4/mmm
MnGaFe4 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
MnGaFe2 (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of GaFe2Co; e_above_hull: 0.114171 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.04 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phase diagram of GaFe6Co; e_above_hull: 0.027048 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2868 eV; energy change = -0.0114 eV; symmetry: Pmm2 → Pmm2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -44.2912 eV; energy change = -0.0126 eV; symmetry: P4/mmm → P4/mmm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.3190 eV; energy change = -0.0060 eV; symmetry: P4/mmm → P4/mmm
GaFe4Co (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
GaFe6Co (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
GaFe2Co (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.06 THz
Phase diagram of GaFe2Co; e_above_hull: 0.114171 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2867 eV; energy change = -0.0112 eV; symmetry: Pmm2 → Pmm2
GaFe2Co (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Supercell 2x2x2 of GaFe2Co (Space group: P4mm, 64 symmetry operations)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.08 THz
Phase diagram of GaFe2Co; e_above_hull: 0.066706 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.3785 eV; energy change = -0.0035 eV; symmetry: Fm-3m → Fm-3m
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.4767 eV; energy change = -0.0010 eV; symmetry: P4mm → P4mm
Phase diagram of Fe3CoAu; e_above_hull: 0.111199 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -70.6838 eV; energy change = -0.0692 eV; symmetry: I4mm → I4mm
MatterGen magnetic density 0.12 generation
MatterGen magnetic density 0.12 generation
Chemeleon generated Fe3Pt crystal (space group: P1 #1, crystal system: triclinic, point group: 1) (missed requested crystal system: cubic) (missed expected composition: FeCoNiPt)
Chemeleon generated Nd2Fe13B2 crystal (space group: P1 #1, crystal system: triclinic, point group: 1) (missed requested crystal system: tetragonal) (missed expected composition: Nd2Fe14B)
2 crystal structures generated from text: A crystal structure of MnFe6Bi with tetragonal symmetry
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.21 THz
4 unique crystal structures for composition MnFe7Bi
Phase diagram of MnFe2Bi; e_above_hull: 0.510861 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -55.6330 eV; energy change = -0.4884 eV; symmetry: Cm → Cm
1 unique crystal structures for composition Fe6MnBi
Phase diagram of YMnO3; e_above_hull: 0.345640 eV/atom; predicted_stable: False
8 generated crystal structures for the chemical system Fe-Bi-B
Phase diagram of Fe6BiB2; e_above_hull: 0.643968 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -6.20 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -64.0170 eV; energy change = -0.3202 eV; symmetry: P4/mmm → P4/mmm
Fe6BiB3 (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Fe6BiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -4.61 THz
Phase diagram of Fe6BiB; e_above_hull: 0.499019 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -3.80 THz
Phase diagram of Fe5BiB; e_above_hull: 0.560238 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.1543 eV; energy change = -7.8850 eV; symmetry: P4/mmm → P4/mmm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -49.7946 eV; energy change = -0.0079 eV; symmetry: P4/mmm → P4/mmm
Fe6BiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Fe5BiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
FeBiB (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -6.27 THz
Phase diagram of Mn2Fe7Bi; e_above_hull: 0.745718 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -73.6729 eV; energy change = -0.2544 eV; symmetry: Pmmm → Pmmm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -70.8796 eV; energy change = -90.5475 eV; symmetry: Pmmm → P1
Mn2Fe7Bi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
MnFe7Bi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm) (missed expected composition: MnFe7Bi)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -7.64 THz
Phase diagram of Fe8Bi2N; e_above_hull: 0.656510 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -76.7223 eV; energy change = -7.8651 eV; symmetry: P-3m1 → P-3m1
Fe8Bi2N (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of Fe9Bi3N; e_above_hull: 0.595575 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -88.5203 eV; energy change = -0.1706 eV; symmetry: Pm-3m → Pm-3m
Fe9Bi3N (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe9Bi3S; e_above_hull: 1.907304 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -67.9435 eV; energy change = -0.2818 eV; symmetry: Pm-3m → Pm-3m
Fe7BiS (space group: Pm-3m #221, crystal system: cubic, point group: m-3m) (missed expected composition: Fe7BiS)
Fe9Bi3S (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe3CoTe; e_above_hull: 2.111855 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.4730 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3CoTe (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe4CoTe; e_above_hull: 0.603236 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.8724 eV; energy change = -0.3213 eV; symmetry: P4/mmm → P4/mmm
Fe4TeCo (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4TeCo)
Phase diagram of FeCoTe2; e_above_hull: 0.099749 eV/atom; predicted_stable: False
Phase diagram of Fe5SiB2; e_above_hull: 0.376477 eV/atom; predicted_stable: False
Phase diagram of MnFe4SiB2; e_above_hull: 0.442220 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -18.6897 eV; energy change = -0.0112 eV; symmetry: P3m1 → P3m1
FeNiAl (space group: P3m1 #156, crystal system: trigonal, point group: 3m) (missed expected composition: FeNiAl)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2595 eV; energy change = -0.0024 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4MnSiB2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9531 eV; energy change = -0.0143 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe8N; e_above_hull: 1.507819 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -125.2035 eV; energy change = -0.2049 eV; symmetry: P6_3/mmc → P6_3/mmc
Fe16N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm) (missed expected composition: Fe16N2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -44.1333 eV; energy change = -0.0415 eV; symmetry: Pccm → Pccm
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -1.35 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phase diagram of Fe2Co4Sb; e_above_hull: 0.286817 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -47.9482 eV; energy change = -0.0094 eV; symmetry: P4/mmm → P4/mmm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -42.6565 eV; energy change = -0.0303 eV; symmetry: P-3m1 → P-3m1
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -4.25 THz
8 generated crystal structures for the chemical system Fe-Te-Co
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.9469 eV; energy change = -0.0022 eV; symmetry: P4/mmm → P4/mmm
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -8.23 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -168.0808 eV; energy change = -0.0111 eV; symmetry: P4/mbm → P4/mbm
8 generated crystal structures for the chemical system Fe-Sb-Co
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.7131 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe7Te8S (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Fe3Te4Se (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Fe2SbB (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm) (missed expected composition: Fe2SbB)
8 generated crystal structures for the chemical system Fe-Mn-Bi-B
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -0.91 THz
Phase diagram of FeSnBi3; e_above_hull: 0.224796 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -92.0260 eV; energy change = -0.9237 eV; symmetry: Cmmm → Cmmm
8 generated crystal structures for the chemical system Fe-Bi-Sn
FeBiSn (space group: P3m1 #156, crystal system: trigonal, point group: 3m) (missed expected composition: FeBiSn)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -90.5637 eV; energy change = -0.0563 eV; symmetry: P2_1/c → P2_1/c
8 generated crystal structures for the chemical system Fe-Bi-Te
Fe6Bi2Te3 (space group: R-3m #166, crystal system: trigonal, point group: -3m) (missed expected composition: Fe6Bi2Te3)
FeBiTe (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.0650 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
YMnO3 (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Dataset powering the material cost calculator. Lists element's USD/kg and when the data was last updated and where it came from.
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -0.84 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = 0.00 THz
Phase diagram of MnBi; e_above_hull: 0.184240 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -19.1233 eV; energy change = 0.0000 eV; symmetry: P2/m → P2/m
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -19.87 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -19.87 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -3.84 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -19.87 THz
Supercell 3x3x3 of FeCo2Pt (Space group: Pmm2, 108 symmetry operations)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phase diagram of FeCo2Pt; e_above_hull: 0.017357 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1047 eV; energy change = -0.0019 eV; symmetry: P4/mmm → P4/mmm
2 unique crystal structures for composition FeNiCoPt
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -4.25 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.3650 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
FeCoNiPt (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed requested SG: Fm3m)
FeCoNiPt (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of Mn7Ni2Bi; e_above_hull: 1.254470 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -12.24 THz
Mn8Ni2Bi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Mn8Ni2Bi)
Phase diagram of Mn8NiBi; e_above_hull: 2.449540 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -15.56 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.1915 eV; energy change = -3.8872 eV; symmetry: Pmmm → Pmmm
Mn8NiBi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -4.49 THz
Phase diagram of Mn4NiBi; e_above_hull: 1.047519 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.9696 eV; energy change = -0.7430 eV; symmetry: P4/mmm → P4/mmm
Mn4NiBi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
MnNi2Bi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Mn2NiBi2 (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
MnBiNi (space group: P3m1 #156, crystal system: trigonal, point group: 3m) (missed expected composition: MnBiNi)
MnCoBi (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Supercell 3x3x3 of Mn3FeBi (Space group: P4/nmm, 432 symmetry operations)
Phase diagram of Mn3FeBi; e_above_hull: 0.192768 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phase diagram of MnFeBi4; e_above_hull: 0.263688 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -3.54 THz
Phase diagram of MnFeBi; e_above_hull: 0.284968 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -1.07 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.1444 eV; energy change = -0.0797 eV; symmetry: P4/nmm → P4/nmm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -63.0072 eV; energy change = -0.0034 eV; symmetry: P4/mcc → P4/mcc
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -77.3587 eV; energy change = -0.0226 eV; symmetry: P4/nmm → P4/nmm
4 generated crystal structures for the chemical system Mn-Fe-Bi
Supercell 3x3x3 of MnFeBi (Space group: F-43m, 2592 symmetry operations)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = 0.00 THz
Phase diagram of MnFeBi; e_above_hull: 0.420958 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -80.6568 eV; energy change = 0.0000 eV; symmetry: F-43m → F-43m
8 generated crystal structures for the chemical system Fe-Mn-Bi
MnFe6Bi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe5Bi; e_above_hull: 0.426856 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -5.84 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -52.1704 eV; energy change = -0.1142 eV; symmetry: P4/mmm → P4/mmm
MnFe5Bi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe6Bi; e_above_hull: 0.254313 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.5567 eV; energy change = -0.0596 eV; symmetry: P4/mmm → P4/mmm
Phase diagram of MnFe8Bi; e_above_hull: 0.511051 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -5.25 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -75.3464 eV; energy change = -1.7055 eV; symmetry: P4/mmm → P4/mmm
MnFe6Bi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
MnFe8Bi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -6.18 THz
Phase diagram of MnFe4Bi; e_above_hull: 0.732068 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -42.3332 eV; energy change = -0.1484 eV; symmetry: P4/mmm → P4/mmm
Fe4MnBi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe4MnBi)
Supercell 2x2x2 of Mn2Fe2NiBi (Space group: Pm, 16 symmetry operations)
Phase diagram of Mn2Fe2NiBi; e_above_hull: 9.383038 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -18.45 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 11.3740 eV; energy change = -15.8014 eV; symmetry: P4/mmm → P4/mmm
Fe2Mn2BiNi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2Mn2BiNi)
Phase diagram of MnBi; e_above_hull: 0.184241 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.2515 eV; energy change = 0.0000 eV; symmetry: P6_3/mmc → P6_3/mmc
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
mp-568382
Phase diagram of Fe3CoN; e_above_hull: 0.080521 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -3.77 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -40.7885 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -179.0284 eV; energy change = -87.5695 eV; symmetry: I422 → P1
Co6Fe16Pt2 (space group: I422 #97, crystal system: tetragonal, point group: 422) (missed expected composition: Co6Fe16Pt2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -182.1193 eV; energy change = -65.2697 eV; symmetry: Cmmm → Pm
Co6Fe16Pt2 (space group: Cmmm #65, crystal system: orthorhombic, point group: mmm) (missed expected composition: Co6Fe16Pt2)
Phase diagram of Fe2NiBi; e_above_hull: 0.370855 eV/atom; predicted_stable: False
Phase diagram of Fe8Co3Pt; e_above_hull: 0.033890 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -191.0519 eV; energy change = -0.0024 eV; symmetry: Imm2 → Imm2
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.07 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = 0.00 THz
Phase diagram of Fe15Ir; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -135.7751 eV; energy change = -0.0058 eV; symmetry: Pm-3m → Pm-3m
Fe15Ir (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of AlGaFe2Ni; e_above_hull: 0.361111 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 197.4775 eV; energy change = -61702.1280 eV; symmetry: P4mm → P1
Fe2NiGaAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2NiGaAl)
Phase diagram of Mn2AlFe; e_above_hull: 0.022079 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.9734 eV; energy change = -0.0075 eV; symmetry: Pmm2 → Pmm2
Mn2FeAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2) (missed expected composition: Mn2FeAl)
Phase diagram of MnAl(FeB)2; e_above_hull: 0.324947 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -43.5646 eV; energy change = -2.2170 eV; symmetry: P4mm → P4mm
Fe2MnAlB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm) (missed expected composition: Fe2MnAlB2)
Phase diagram of MnFe7N; e_above_hull: 0.985537 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -136.5021 eV; energy change = -24.8923 eV; symmetry: P6_3/mmc → P6_3/mmc
Fe14Mn2N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm) (missed expected composition: Fe14Mn2N2)
Phase diagram of Fe4NiBi; e_above_hull: 4.419446 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -17.0334 eV; energy change = -0.0000 eV; symmetry: P4/mmm → P4/mmm
Phase diagram of Fe2SiNiB; e_above_hull: 1.075138 eV/atom; predicted_stable: False
Fe4NiBi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.5872 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2NiSiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm) (missed expected composition: Fe2NiSiB)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -10.4390 eV; energy change = -2.1455 eV; symmetry: P-6m2 → P-6m2
FeNiMnAlB2 (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2) (missed expected composition: FeNiMnAlB2)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -2.94 THz
Phase diagram of Fe4CoNiPt; e_above_hull: 0.334216 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -51.1571 eV; energy change = -0.0616 eV; symmetry: P4/mmm → P4/mmm
Phase diagram of Fe8N; e_above_hull: 1.507782 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -125.2039 eV; energy change = -0.2048 eV; symmetry: P6_3/mmc → P6_3/mmc
Fe4CoNiPt (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Fe16N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm)
Phase diagram of MnFe4NiB2; e_above_hull: 0.444255 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.7034 eV; energy change = -0.0001 eV; symmetry: P4/mmm → P4/mmm
Fe4MnNiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnCr(Fe2B)2; e_above_hull: 0.353456 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -65.2168 eV; energy change = -0.0457 eV; symmetry: P4/mmm → P4/mmm
Fe4MnCrB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe3SiB2; e_above_hull: 0.551054 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -52.3608 eV; energy change = -3.3741 eV; symmetry: Pm → Pm
Fe3Ni2MnSiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFe2SiB2; e_above_hull: 0.975605 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.7134 eV; energy change = 0.0117 eV; symmetry: P-6m2 → P-6m2
Fe4MnNiSiB2 (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of Fe5SiNiB; e_above_hull: 0.776371 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -112.6669 eV; energy change = -231.9242 eV; symmetry: I4mm → Cc
Fe10Ni2Si2B2 (space group: I4mm #107, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnAlFe2Ni; e_above_hull: 1.190918 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.8458 eV; energy change = -38.5475 eV; symmetry: P4mm → P4mm
Fe2MnNiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe7Si2(NiB)2; e_above_hull: 0.329225 eV/atom; predicted_stable: False
Phase diagram of FeCoNiPt; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -95.4365 eV; energy change = -20.3158 eV; symmetry: Pm → Pm
Fe7Ni2Si2B2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnCrFe3B2; e_above_hull: 0.535079 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -55.8682 eV; energy change = -215.2528 eV; symmetry: P3m1 → Cm
Fe3MnCrB2 (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of MnAl(Fe2B)2; e_above_hull: 0.396484 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.5542 eV; energy change = -0.0039 eV; symmetry: P4/mmm → P4/mmm
Fe4MnAlB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of GaFe2Ni; e_above_hull: 0.090759 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.1274 eV; energy change = -0.0471 eV; symmetry: Pmm2 → Pmm2
Fe2NiGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -56.9656 eV; energy change = -14.3124 eV; symmetry: Pm → Pm
Fe3MnNiAlB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFe3SiB2; e_above_hull: 0.602096 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -52.0036 eV; energy change = -5.5470 eV; symmetry: Pm → Pm
Fe3MnSiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFe2SiNi; e_above_hull: 38.450104 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 151.6603 eV; energy change = -54974.8631 eV; symmetry: P4mm → P1
Fe2MnNiSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnFe6SiB2; e_above_hull: 0.614825 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -75.7860 eV; energy change = -19.3128 eV; symmetry: P4/mmm → P4/mmm
Fe6Ni2MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnGaFe2; e_above_hull: 0.091347 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1186 eV; energy change = -0.0152 eV; symmetry: Pmm2 → Pmm2
Fe2MnGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe3SiNiB2; e_above_hull: 0.449968 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -49.7009 eV; energy change = -6.1874 eV; symmetry: Pm → Pm
Fe3NiSiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFe3Si; e_above_hull: 1.230729 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -35.0916 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3MnSi (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425305 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0954 eV; energy change = -0.0721 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Mn2GaFeSi; e_above_hull: 1.582858 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.1579 eV; energy change = -5.3676 eV; symmetry: P4mm → P4mm
Mn2FeGaSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnFe3SiB2; e_above_hull: 0.602096 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -52.0036 eV; energy change = -5.5470 eV; symmetry: Pm → Pm
Fe3MnSiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFe3NiB; e_above_hull: 0.545744 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -44.8849 eV; energy change = -0.2549 eV; symmetry: P-6m2 → P-6m2
Fe3MnNiB (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnFe2NiB; e_above_hull: 1.133738 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.0579 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnNiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe3Si(NiB)2; e_above_hull: 0.476466 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -55.2194 eV; energy change = -12.9130 eV; symmetry: Pm → Pm
Fe3Ni2SiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnAlFe2B; e_above_hull: 0.245445 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9679 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -69.7288 eV; energy change = -14.1692 eV; symmetry: P-4m2 → Pm
Fe4MnCrNiB2 (space group: P-4m2 #115, crystal system: tetragonal, point group: -42m)
Phase diagram of Fe2SiNiB2; e_above_hull: 0.298868 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -42.1887 eV; energy change = -9.3281 eV; symmetry: P4mm → P4mm
Fe2NiSiB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Mn2AlGaFe; e_above_hull: 1.689853 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.9374 eV; energy change = -4.1478 eV; symmetry: P4mm → P1
Mn2FeGaAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnFe4NiB2; e_above_hull: 0.444255 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.7034 eV; energy change = -0.0001 eV; symmetry: P4/mmm → P4/mmm
Fe4MnNiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -59.5368 eV; energy change = -9.4750 eV; symmetry: P4mm → P1
Fe2MnCrSiB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnAlFe2Ni; e_above_hull: 1.190918 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.8458 eV; energy change = -38.5475 eV; symmetry: P4mm → P4mm
Fe2NiMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnAlFe2B; e_above_hull: 0.245445 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.9679 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2MnAlB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe9Si(NiB)2; e_above_hull: 0.368991 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -104.7172 eV; energy change = -37.2114 eV; symmetry: Pm → P1
Fe9Ni2SiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFeNiB2; e_above_hull: 0.379616 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.7165 eV; energy change = -9826.3796 eV; symmetry: P4mm → Pmmm
FeNiMnB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
MnAl (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of Mn2GaFe; e_above_hull: 0.014567 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.0118 eV; energy change = -0.0058 eV; symmetry: Pmm2 → Pmm2
Mn2FeGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Mn2Fe5SiB2; e_above_hull: 1.016896 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -72.5956 eV; energy change = -32.4856 eV; symmetry: P-4m2 → P1
Fe5Mn2SiB2 (space group: P-4m2 #115, crystal system: tetragonal, point group: -42m)
Phase diagram of MnFe2SiB2; e_above_hull: 0.410333 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -45.1050 eV; energy change = -0.4709 eV; symmetry: P4mm → P4mm
Fe2MnSiB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of AlFe2NiP2; e_above_hull: 2.660232 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.9743 eV; energy change = 0.0279 eV; symmetry: P4mm → P4/mmm
Fe2NiAlP (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnFe4SiB2; e_above_hull: 0.441857 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2611 eV; energy change = -0.0030 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe2SiNi; e_above_hull: 40.241687 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 152.6071 eV; energy change = -54973.9163 eV; symmetry: P4mm → P1
Fe2NiMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of AlFe2SiNi; e_above_hull: 1.143848 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.5718 eV; energy change = -5107.2696 eV; symmetry: P4mm → Pmm2
Fe2NiAlSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of AlFe2Ni; e_above_hull: 0.112198 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2435 eV; energy change = -0.0138 eV; symmetry: Pmm2 → Pmm2
Fe2NiAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe5SiB2; e_above_hull: 0.376405 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9533 eV; energy change = -0.0150 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425305 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0954 eV; energy change = -0.0721 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe2Ni; e_above_hull: 0.066408 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.6444 eV; energy change = -0.0024 eV; symmetry: Pmm2 → Pmm2
Fe2NiMn (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425305 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0954 eV; energy change = -0.0721 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe4SiB2; e_above_hull: 0.441857 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2611 eV; energy change = -0.0030 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe4SiB2; e_above_hull: 0.441857 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2611 eV; energy change = -0.0030 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeSiNiB2; e_above_hull: 1.154035 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.0571 eV; energy change = -40.8072 eV; symmetry: P4mm → Pm
FeNiSiB2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Al(FeB)2; e_above_hull: 1.171914 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.0307 eV; energy change = 0.0611 eV; symmetry: P-3m1 → P6/mmm
Fe2AlB2 (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of MnAlFe2Ni; e_above_hull: 1.190917 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.8458 eV; energy change = -38.5475 eV; symmetry: P4mm → P4mm
Fe2NiMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe5SiB2; e_above_hull: 0.376405 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9533 eV; energy change = -0.0150 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe2SiNi; e_above_hull: 40.131280 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 167.9410 eV; energy change = -54958.5824 eV; symmetry: P4mm → P1
Fe2NiMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe2NiGe; e_above_hull: 0.149822 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.3708 eV; energy change = -0.0398 eV; symmetry: Pmm2 → Pmm2
Fe2NiGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2SiNi; e_above_hull: 0.178324 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8501 eV; energy change = -0.0854 eV; symmetry: Pmm2 → Pmm2
Fe2NiSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnAlFe4Ni; e_above_hull: 0.422783 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -50.7065 eV; energy change = -0.1315 eV; symmetry: P4/mmm → P4/mmm
Fe4NiMnAl (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of VFe4(SiNi)2; e_above_hull: 9.601181 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -11.6819 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2NiSiV (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe2SiNi; e_above_hull: 1.238905 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 153.8748 eV; energy change = -54972.6486 eV; symmetry: P4mm → P1
Fe2NiMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnFeSiNi; e_above_hull: 0.136581 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.7889 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
NiMnFeSi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of MnFe4SiB2; e_above_hull: 0.441857 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2611 eV; energy change = -0.0030 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnFe2NiGe; e_above_hull: 4.725309 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -13.5566 eV; energy change = -0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2NiMnGe (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnAlFe2Ni; e_above_hull: 1.190918 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.8458 eV; energy change = -38.5475 eV; symmetry: P4mm → P4mm
Fe2NiMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Fe2NiSiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe6NiBN; e_above_hull: 0.394170 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -131.6204 eV; energy change = -129.0832 eV; symmetry: Imm2 → Pc
Fe12Ni2B2N2 (space group: Imm2 #44, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnAlFeNi; e_above_hull: 0.117791 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.8963 eV; energy change = -0.1427 eV; symmetry: P4mm → P4mm
FeNiMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe4SiNiB2; e_above_hull: 0.425305 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -58.0954 eV; energy change = -0.0721 eV; symmetry: P4/mmm → P4/mmm
Fe4NiSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeNi2Ge; e_above_hull: 0.164210 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8621 eV; energy change = -0.0207 eV; symmetry: Pmm2 → Pmm2
Ni2FeGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeNi2Ge; e_above_hull: 0.164210 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8621 eV; energy change = -0.0207 eV; symmetry: Pmm2 → Pmm2
Ni2FeGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of AlFe2SiNi; e_above_hull: 1.224438 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 126.1471 eV; energy change = -4952.5506 eV; symmetry: P4mm → P1
Fe2NiAlSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of FeSiNi2; e_above_hull: 0.176406 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.3791 eV; energy change = -0.0141 eV; symmetry: Pmm2 → Pmm2
Ni2FeSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnFe4SiB2; e_above_hull: 0.441857 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -61.2611 eV; energy change = -0.0030 eV; symmetry: P4/mmm → P4/mmm
Fe4MnSiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Mn2Fe8SiB2; e_above_hull: 0.368407 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -103.2738 eV; energy change = -8.8112 eV; symmetry: Pm → Pm
Fe8Mn2SiB2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnAlFe2Ni; e_above_hull: 1.190917 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.8458 eV; energy change = -38.5475 eV; symmetry: P4mm → P4mm
Fe2NiMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe2NiGe; e_above_hull: 0.149822 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.3708 eV; energy change = -0.0398 eV; symmetry: Pmm2 → Pmm2
Fe2NiGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of AlFe2Ni; e_above_hull: 0.112198 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2435 eV; energy change = -0.0138 eV; symmetry: Pmm2 → Pmm2
Fe2NiAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeNi2B; e_above_hull: 0.447395 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.9269 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeNi2B (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of Fe2SiNi; e_above_hull: 0.178324 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8501 eV; energy change = -0.0854 eV; symmetry: Pmm2 → Pmm2
Fe2NiSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe3NiN; e_above_hull: 0.039361 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.6941 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Fe3NiN (space group: Pm-3m #221, crystal system: cubic, point group: m-3m)
Phase diagram of FeNi; e_above_hull: 0.085298 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.1948 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of Mn2Fe6SiB2; e_above_hull: 0.849402 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -81.8540 eV; energy change = -13.2942 eV; symmetry: P4/mmm → P4/mmm
Fe6Mn2SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe5SiB2; e_above_hull: 0.376405 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -60.9533 eV; energy change = -0.0150 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe7BN; e_above_hull: 0.408441 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -145.8535 eV; energy change = -28.5472 eV; symmetry: Pc → P1
Fe14B2N2 (space group: Pc #7, crystal system: monoclinic, point group: m)
Phase diagram of Fe8N; e_above_hull: 1.507782 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -125.2039 eV; energy change = -0.2048 eV; symmetry: P6_3/mmc → P6_3/mmc
Fe16N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.0913 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe5SiB2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Fe2NiAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Fe2AlB2 (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Fe2CoTa (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
FeCoNiPt (space group: Pm #6, crystal system: monoclinic, point group: m)
FeCoNiPt (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCoNiPt; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Phase diagram of FeCoNiPt; e_above_hull: 0.000000 eV/atom; predicted_stable: True
FeCoNiPt (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -225.8460 eV; energy change = -171.9141 eV; symmetry: Fm-3m → P1
FeCoNiPt (space group: Fm-3m #225, crystal system: cubic, point group: m-3m)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.0913 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
FeCoNiPt (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Supercell 3x3x3 of AlFe2Co (Space group: Pmm2, 108 symmetry operations)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -142.8136 eV; energy change = -0.0201 eV; symmetry: C2/m → C2/m
Phase diagram of Fe4CoNiP2; e_above_hull: 0.398515 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -57.5110 eV; energy change = -0.5353 eV; symmetry: Pm → Pm
Fe4CoNiP2 (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of AlFeCoNi; e_above_hull: 0.687361 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.8257 eV; energy change = -0.5630 eV; symmetry: P4mm → P4mm
FeCoNiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of AlFe2CoSi; e_above_hull: 16.183989 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 163.4297 eV; energy change = -12314.2383 eV; symmetry: P4mm → P1
Fe2CoAlSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of TaFeCoB; e_above_hull: 5.575696 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -13.7075 eV; energy change = -0.0001 eV; symmetry: P4/mmm → P4/mmm
FeCoTaB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe12Co2BN; e_above_hull: 1.983509 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -101.7875 eV; energy change = -47.0249 eV; symmetry: P4/mmm → P1
Fe12Co2BN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of TaFeCo; e_above_hull: 0.219286 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.3823 eV; energy change = -0.0125 eV; symmetry: P3m1 → P3m1
FeCoTa (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of AlFe2Co; e_above_hull: 0.134595 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.3771 eV; energy change = -0.0092 eV; symmetry: Pmm2 → Pmm2
Fe2CoAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of TaFe2Co; e_above_hull: 0.056542 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.3134 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe2CoTa (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of TaFe2; e_above_hull: 0.168183 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.7925 eV; energy change = -0.0012 eV; symmetry: P-3m1 → P-3m1
Fe2Ta (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of MnFe2CoSi; e_above_hull: 5.375000 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -12.4828 eV; energy change = -0.0001 eV; symmetry: P4/mmm → P4/mmm
Fe2CoMnSi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCoBMo; e_above_hull: 8.378539 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -0.8652 eV; energy change = -0.0002 eV; symmetry: P4/mmm → P4/mmm
FeCoMoB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of ZrFeCoB; e_above_hull: 2.090971 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.4699 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCoZrB (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of TaFe2N; e_above_hull: 1.122509 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.9246 eV; energy change = -1.2445 eV; symmetry: P-6m2 → P-6m2
Fe2TaN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo2GeW; e_above_hull: 4.936318 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2055 eV; energy change = -0.0000 eV; symmetry: P4/mmm → P4/mmm
Co2FeGeW (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe2CoP; e_above_hull: 0.348166 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.6510 eV; energy change = -0.0129 eV; symmetry: Pmm2 → Pmm2
Fe2CoP (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of ZrFe2Co; e_above_hull: 0.174797 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.7946 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe2CoZr (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of FeCo2ReGe; e_above_hull: 1.397677 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -33.4166 eV; energy change = -20.1940 eV; symmetry: P4/mmm → P1
Co2FeReGe (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCo2GeW; e_above_hull: 4.936318 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2055 eV; energy change = -0.0000 eV; symmetry: P4/mmm → P4/mmm
Co2FeWGe (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe8CoB; e_above_hull: 0.240764 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -160.1952 eV; energy change = -287.5279 eV; symmetry: Immm → P1
Fe12Co2B (space group: Immm #71, crystal system: orthorhombic, point group: mmm)
Phase diagram of Fe2CoNiB; e_above_hull: 1.118409 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.9247 eV; energy change = -0.0000 eV; symmetry: P4/mmm → P4/mmm
Fe2CoNiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCo2ReW; e_above_hull: 1.775145 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 142.3702 eV; energy change = -31705.7723 eV; symmetry: P4mm → P1
Co2FeReW (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnAlFeCo; e_above_hull: 0.107929 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1590 eV; energy change = -0.0156 eV; symmetry: P4mm → P4mm
FeCoMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe2CoNiGe; e_above_hull: 5.145134 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -9.4950 eV; energy change = -0.0002 eV; symmetry: P4/mmm → P4/mmm
Fe2CoNiGe (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of TiFe10Co3B; e_above_hull: 0.198061 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -119.9540 eV; energy change = -37.3313 eV; symmetry: P4/mmm → P1
Fe10Co3TiB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCo2SiGe; e_above_hull: 0.696100 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.9653 eV; energy change = -0.7058 eV; symmetry: P4mm → P4mm
Co2FeSiGe (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of NbFe10Co3B2; e_above_hull: 0.334933 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -126.9864 eV; energy change = -18.5467 eV; symmetry: P-1 → P1
Fe10Co3NbB2 (space group: P-1 #2, crystal system: triclinic, point group: -1)
Phase diagram of FeCoBMo; e_above_hull: 8.378512 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -0.8652 eV; energy change = -0.0002 eV; symmetry: P4/mmm → P4/mmm
FeCoMoB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeNiBMo; e_above_hull: 1.469419 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 4.2891 eV; energy change = -0.0245 eV; symmetry: P4/mmm → Pm
FeNiMoB (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of TaFe2; e_above_hull: 0.168184 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.7925 eV; energy change = -0.0012 eV; symmetry: P-3m1 → P-3m1
Fe2Ta (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Phase diagram of MnAlFeCo; e_above_hull: 0.107929 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1590 eV; energy change = -0.0156 eV; symmetry: P4mm → P4mm
FeCoMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe2CoSi; e_above_hull: 0.172434 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1484 eV; energy change = -0.0289 eV; symmetry: Pmm2 → Pmm2
Fe2CoSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
8 generated crystal structures for the chemical system Fe-Be-N
Phase diagram of FeCoBPt; e_above_hull: 1.564693 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.2624 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoPtB (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of ZrFe8Co3B2; e_above_hull: 0.346172 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -109.4723 eV; energy change = -60.8840 eV; symmetry: P6/mmm → P1
Fe10Co3ZrB2 (space group: P6/mmm #191, crystal system: hexagonal, point group: 6/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -74.5608 eV; energy change = -0.0575 eV; symmetry: P-1 → P-1
Phase diagram of Fe2CoB; e_above_hull: 0.370766 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -73.2418 eV; energy change = -0.0633 eV; symmetry: P-1 → P-1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1663 eV; energy change = -0.0484 eV; symmetry: Pmm2 → Pmm2
Fe2CoB (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe11Co3B; e_above_hull: 0.360276 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -117.0295 eV; energy change = -0.0759 eV; symmetry: Pmmm → Pmm2
Fe11Co3B (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of Fe8CoB; e_above_hull: 0.240533 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -160.1998 eV; energy change = -287.5325 eV; symmetry: Immm → P1
Fe12Co2B (space group: Immm #71, crystal system: orthorhombic, point group: mmm)
Phase diagram of FeCoGePt; e_above_hull: 3.627911 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -12.7741 eV; energy change = -65.6711 eV; symmetry: P4mm → P4/mmm
FeCoPtGe (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of FeCo2Re; e_above_hull: 0.134349 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.7498 eV; energy change = -0.0035 eV; symmetry: Pmm2 → Pmm2
Co2FeRe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2CoSiNi; e_above_hull: 1.404220 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 200.8004 eV; energy change = -54741.7934 eV; symmetry: P4mm → P1
Fe2CoNiSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of FeCo2Si; e_above_hull: 0.163252 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8711 eV; energy change = -0.0007 eV; symmetry: Pmm2 → Pmm2
Co2FeSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeCo2SiGe; e_above_hull: 0.696100 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.9653 eV; energy change = -0.7058 eV; symmetry: P4mm → P4mm
Co2FeGeSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe2Co4ReW; e_above_hull: 0.235842 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -69.3600 eV; energy change = -0.0574 eV; symmetry: P4/mmm → P4/mmm
Co4Fe2ReW (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe2Co4ReW; e_above_hull: 0.235842 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -69.3600 eV; energy change = -0.0574 eV; symmetry: P4/mmm → P4/mmm
Co4Fe2ReW (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of FeCo2Si; e_above_hull: 0.163252 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8711 eV; energy change = -0.0007 eV; symmetry: Pmm2 → Pmm2
Co2FeSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2CoGe; e_above_hull: 0.148199 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.5764 eV; energy change = -0.0556 eV; symmetry: Pmm2 → Pmm2
Fe2CoGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeCo2Ge; e_above_hull: 0.178582 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2249 eV; energy change = -0.0144 eV; symmetry: Pmm2 → Pmm2
Co2FeGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2CoGe; e_above_hull: 0.148199 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.5764 eV; energy change = -0.0556 eV; symmetry: Pmm2 → Pmm2
Fe2CoGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2Co5ReW; e_above_hull: 0.738427 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -71.7900 eV; energy change = -25.9038 eV; symmetry: P-4m2 → P-4m2
Co5Fe2ReW (space group: P-4m2 #115, crystal system: tetragonal, point group: -42m)
Phase diagram of Fe2CoGe; e_above_hull: 0.148191 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.5764 eV; energy change = -0.0556 eV; symmetry: Pmm2 → Pmm2
Fe2CoGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2CoSb; e_above_hull: 0.319536 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2219 eV; energy change = -0.0165 eV; symmetry: Pmm2 → Pmm2
Fe2CoSb (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of Fe2Co4ReW; e_above_hull: 0.235841 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -69.3600 eV; energy change = -0.0574 eV; symmetry: P4/mmm → P4/mmm
Co4Fe2ReW (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of Fe2CoSi; e_above_hull: 0.172434 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1484 eV; energy change = -0.0289 eV; symmetry: Pmm2 → Pmm2
Fe2CoSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeCo2Re; e_above_hull: 0.134349 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.7498 eV; energy change = -0.0035 eV; symmetry: Pmm2 → Pmm2
Co2FeRe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeCoNiPt; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.9506 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoNiPt (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of FeCoPt; e_above_hull: 0.075444 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -21.8449 eV; energy change = -0.0961 eV; symmetry: P3m1 → P-6m2
FeCoPt (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Fe16N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm)
Phase diagram of FeCoBPt; e_above_hull: 1.564694 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.2624 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoPtB (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of FeCoPt; e_above_hull: 0.075445 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -21.8449 eV; energy change = -0.0961 eV; symmetry: P3m1 → P-6m2
FeCoPt (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of GaFeCoSi; e_above_hull: 0.294701 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.4365 eV; energy change = -57.0664 eV; symmetry: P4mm → Pmm2
FeCoGaSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of FeCoSiNi; e_above_hull: 0.132170 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.8062 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoNiSi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of MnCoSi; e_above_hull: 0.325542 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -22.0538 eV; energy change = -0.0004 eV; symmetry: P3m1 → P3m1
MnCoSi (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of FeCoSiNi; e_above_hull: 0.132170 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.8062 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoNiSi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -33.0915 eV; energy change = -16.2762 eV; symmetry: P4mm → P4mm
FeCoNiAlTi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Mn2CoSn; e_above_hull: 0.176721 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.8567 eV; energy change = -0.0031 eV; symmetry: Pmm2 → Pmm2
Mn2CoSn (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of AlFeSiNi; e_above_hull: 0.211802 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8661 eV; energy change = -20.1781 eV; symmetry: P4mm → Pmm2
FeNiAlSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of AlFeCoSi; e_above_hull: 0.287201 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.7865 eV; energy change = -45.1489 eV; symmetry: P4mm → Pmm2
FeCoAlSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Mn2GaCo; e_above_hull: 0.071653 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.6976 eV; energy change = -0.0374 eV; symmetry: Pmm2 → Pmm2
Mn2CoGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of GaFe2CoSi; e_above_hull: 0.634516 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.3956 eV; energy change = -2.8664 eV; symmetry: P4mm → P1
Fe2CoGaSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.4363 eV; energy change = -3.2743 eV; symmetry: P4mm → P4mm
TiCrMnFeNi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Fe2CoSi; e_above_hull: 0.172434 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.1484 eV; energy change = -0.0289 eV; symmetry: Pmm2 → Pmm2
Fe2CoSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of NbFeCoMo; e_above_hull: 0.212847 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.0732 eV; energy change = -0.0765 eV; symmetry: P4mm → P4mm
FeCoNbMo (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 113.6412 eV; energy change = -113566.9760 eV; symmetry: P4mm → P1
FeCoNiMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnGaFe; e_above_hull: 0.105687 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.6449 eV; energy change = -0.0128 eV; symmetry: P3m1 → P3m1
FeMnGa (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of AlFeCo; e_above_hull: 0.159887 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.0030 eV; energy change = -0.0066 eV; symmetry: P3m1 → P3m1
FeCoAl (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of AlGaFeCo; e_above_hull: 0.194993 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.1118 eV; energy change = -58.0170 eV; symmetry: P4mm → Pmmm
FeCoAlGa (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 129.2719 eV; energy change = -194804.8218 eV; symmetry: P4mm → P1
CrMnFeCoNi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of Mn2FeGe; e_above_hull: 0.056042 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.4525 eV; energy change = -0.0049 eV; symmetry: Pmm2 → Pmm2
Mn2FeGe (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of AlFeCoNi; e_above_hull: 0.687356 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.8257 eV; energy change = -0.5630 eV; symmetry: P4mm → P4mm
FeCoNiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.0884 eV; energy change = -4643.0303 eV; symmetry: P4mm → Cm
VCrMnFeCo (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of ZrFeCoMo; e_above_hull: 1.444208 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 51.3547 eV; energy change = -53.7855 eV; symmetry: P3m1 → P1
FeCoMoZr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
MnFeGa (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of TiAlFeCo; e_above_hull: 0.080744 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1533 eV; energy change = -0.2198 eV; symmetry: P4mm → P4mm
CoFeTiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of TiAlFeCo; e_above_hull: 0.080754 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1533 eV; energy change = -0.2198 eV; symmetry: P4mm → P4mm
FeCoTiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of FeCoSiNi; e_above_hull: 0.132170 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.8062 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoNiSi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of ZrAlFeCo; e_above_hull: 0.690892 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.9444 eV; energy change = -0.8878 eV; symmetry: P4mm → P1
FeCoZrAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of VFeCoNi; e_above_hull: 7.072753 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -2.8781 eV; energy change = -0.0001 eV; symmetry: P4/mmm → P4/mmm
FeCoNiV (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of ZrAlFeCo; e_above_hull: 0.690897 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.9444 eV; energy change = -0.8878 eV; symmetry: P4mm → P1
CoFeZrAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of GaFe2Co; e_above_hull: 0.114080 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.2868 eV; energy change = -0.0120 eV; symmetry: Pmm2 → Pmm2
Fe2CoGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnCo2Si; e_above_hull: 0.229304 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.5605 eV; energy change = -0.0048 eV; symmetry: Pmm2 → Pmm2
Co2MnSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of GaFeCoSi2; e_above_hull: 0.471791 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.3921 eV; energy change = -43.4666 eV; symmetry: P4mm → P1
FeCoGaSi2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of VFeCo; e_above_hull: 0.084015 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8597 eV; energy change = -0.0054 eV; symmetry: P3m1 → P3m1
FeCoV (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of GaFeCoSi; e_above_hull: 0.294618 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.4369 eV; energy change = -57.0668 eV; symmetry: P4mm → Pmm2
FeCoGaSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of TiFeCoSi; e_above_hull: 41.256201 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 134.1682 eV; energy change = 127.5166 eV; symmetry: P4/mmm → P1
FeCoTiSi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phase diagram of MnAlCo2; e_above_hull: 0.213686 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.6741 eV; energy change = -0.0081 eV; symmetry: Pmm2 → Pmm2
Co2MnAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of AlFeCoNi; e_above_hull: 0.687358 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.8257 eV; energy change = -0.5630 eV; symmetry: P4mm → P4mm
FeCoNiAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of NbFe10Co7Ni3; e_above_hull: 0.230386 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -158.9340 eV; energy change = -89.4172 eV; symmetry: Pm → P1
Fe9Co7Ni3Nb (space group: Pm #6, crystal system: monoclinic, point group: m)
Phase diagram of MnFeCoSi; e_above_hull: 6.984600 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -3.7066 eV; energy change = -134.3441 eV; symmetry: P4mm → P4/mmm
FeCoMnSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnAlFeCo; e_above_hull: 0.107929 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1590 eV; energy change = -0.0156 eV; symmetry: P4mm → P4mm
MnFeCoAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnAlFeCo; e_above_hull: 0.107929 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1590 eV; energy change = -0.0156 eV; symmetry: P4mm → P4mm
FeCoMnAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of TiFeCo; e_above_hull: 0.162909 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -23.8714 eV; energy change = -0.0030 eV; symmetry: P3m1 → P3m1
FeCoTi (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of TiFeCoNi; e_above_hull: 0.151298 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.9015 eV; energy change = -0.0306 eV; symmetry: P4mm → P4mm
FeCoNiTi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of NbFeCoNi; e_above_hull: 0.181579 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -31.4243 eV; energy change = -0.0524 eV; symmetry: P4mm → P4mm
FeCoNiNb (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of ZrNbFeCo; e_above_hull: 8.950358 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 0.7181 eV; energy change = -0.1587 eV; symmetry: P3m1 → P1
FeCoZrNb (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of GaFeCoSi; e_above_hull: 0.298271 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.4220 eV; energy change = -57.0519 eV; symmetry: P4mm → Pm
FeCoGaSi (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnGaFe2; e_above_hull: 0.091348 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.1186 eV; energy change = -0.0152 eV; symmetry: Pmm2 → Pmm2
Fe2MnGa (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeSi2Ni; e_above_hull: 0.157244 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.4641 eV; energy change = -0.0017 eV; symmetry: Pmm2 → Pmm2
FeNiSi2 (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnSiNi2; e_above_hull: 0.183813 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.1229 eV; energy change = -0.0005 eV; symmetry: Pmm2 → Pmm2
Ni2MnSi (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnCrFeCo; e_above_hull: 1.257532 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 131.6653 eV; energy change = 12.9802 eV; symmetry: P3m1 → P1
FeCoCrMn (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of FeCoSi2; e_above_hull: 0.219596 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.7648 eV; energy change = -0.0027 eV; symmetry: Pmm2 → Pmm2
FeCoSi2 (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of MnFeCoSi4; e_above_hull: 0.457387 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -46.7237 eV; energy change = -31.4641 eV; symmetry: P4mm → P4/mmm
FeCoMnSi2 (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Phase diagram of MnFeSi2; e_above_hull: 0.229590 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.4680 eV; energy change = -0.0125 eV; symmetry: Pmm2 → Pmm2
FeMnSi2 (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Phase diagram of FeCoNiMo; e_above_hull: 1.059388 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.1748 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
FeCoNiMo (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of ZrFeCoMo; e_above_hull: 1.361681 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.4046 eV; energy change = -135.5447 eV; symmetry: P3m1 → P1
FeCoZrMo (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of NbFeCoMo; e_above_hull: 0.212853 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.0732 eV; energy change = -0.0765 eV; symmetry: P4mm → P4mm
FeCoNbMo (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -419.5555 eV; energy change = -16869.5126 eV; symmetry: C2 → P1
Fe12Co12Cr10Mn8V8 (space group: C2 #5, crystal system: monoclinic, point group: 2)
Phase diagram of NbAlFeCo; e_above_hull: 0.947925 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -27.1749 eV; energy change = -2.2955 eV; symmetry: P4mm → P4mm
FeCoNbAl (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
Bi2Se3 (space group: P-3m1 #164, crystal system: trigonal, point group: -3m)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -71.0853 eV; energy change = -45.9213 eV; symmetry: P1 → P1
Fe3Co3V1Cr1Mn1 (space group: P1 #1, crystal system: triclinic, point group: 1)
Phase diagram of MnNbFeCo; e_above_hull: 0.653681 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.6078 eV; energy change = -0.3576 eV; symmetry: P4mm → P1
FeCoMnNb (space group: P4mm #99, crystal system: tetragonal, point group: 4mm)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeNi; e_above_hull: 0.085298 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.1948 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of CrFeCo; e_above_hull: 0.115611 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8723 eV; energy change = -0.0012 eV; symmetry: P3m1 → P3m1
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of CrFeCo; e_above_hull: 0.115611 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8723 eV; energy change = -0.0012 eV; symmetry: P3m1 → P3m1
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of ErCo; e_above_hull: 0.413443 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -11.2886 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
ErCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCu; e_above_hull: 0.146958 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -12.2303 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCu (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnFe; e_above_hull: 0.000000 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -17.5557 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeMn (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnCuNi; e_above_hull: 0.122644 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -18.7678 eV; energy change = -0.0077 eV; symmetry: P3m1 → P3m1
MnNiCu (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of MnNi; e_above_hull: 0.144731 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.7549 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
NiMn (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
5 unique crystal structures for composition SnS
Phase diagram of ZnFeCo; e_above_hull: 0.061105 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.8397 eV; energy change = -0.0046 eV; symmetry: P3m1 → P3m1
FeCoZn (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of CrFeCo; e_above_hull: 0.115611 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8723 eV; energy change = -0.0012 eV; symmetry: P3m1 → P3m1
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of TmFeCo; e_above_hull: 0.126443 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.2635 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCoTm (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnNi; e_above_hull: 0.144731 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.7549 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
NiMn (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeNi; e_above_hull: 0.085298 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.1948 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of CrFeCo; e_above_hull: 0.115611 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8723 eV; energy change = -0.0012 eV; symmetry: P3m1 → P3m1
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of TmFeCo; e_above_hull: 0.126446 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -20.2635 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCoTm (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnNi; e_above_hull: 0.144731 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.7549 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
NiMn (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeNi; e_above_hull: 0.085298 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.1948 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of CrFeCo; e_above_hull: 0.115611 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -24.8723 eV; energy change = -0.0012 eV; symmetry: P3m1 → P3m1
FeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of ZnFe; e_above_hull: 0.066818 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -9.6095 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeZn (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of TmCo; e_above_hull: 0.434406 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -11.1845 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
TmCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnCrFeCo; e_above_hull: 1.281651 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.2952 eV; energy change = -147.9803 eV; symmetry: P3m1 → Pm
MnFeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Phase diagram of DyFe; e_above_hull: 0.525336 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -12.1264 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeDy (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of FeCo; e_above_hull: 0.157973 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -11.1845 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
TmCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -14.1948 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeNi (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
TmCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -15.3505 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
FeCo (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
2 unique crystal structures for composition SnS
Figure from https://doi.org/10.1016/j.mtcomm.2020.101167
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -34.8895 eV; energy change = -0.0008 eV; symmetry: Pmm2 → Pmm2
MnCr2Co (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Mn2CrN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Phase diagram of MnCrFeCo; e_above_hull: 1.257992 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = 132.2463 eV; energy change = 13.5612 eV; symmetry: P3m1 → P1
MnFeCoCr (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
8 generated crystal structures for the chemical system Fe-Cr-Sb
ZT values from Itani et al. cropped to <5 ZT.
ZT distribution from Itani et. al. dataset.
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -62.7596 eV; energy change = -0.9029 eV; symmetry: Pmmm → Pmmm
Ba2Cu3FO5Sr (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -18.2703 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
CrCuO (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
CaZrN2 (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2918 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2918 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2918 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
Phase diagram of FeN; e_above_hull: 0.366793 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2918 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
Phase diagram of FeN; e_above_hull: 0.366793 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -16.2918 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
8 generated crystal structures with magnetic density 0.13, HHI score 0.3
8 generated crystal structures with magnetic density 0.15, HHI score 0.1
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phase diagram of Fe7Co; e_above_hull: 0.002261 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -132.8010 eV; energy change = -0.0008 eV; symmetry: Cmmm → Cmmm
16 generated crystal structures with magnetic density 0.13
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phase diagram of FeCoB; e_above_hull: 0.016309 eV/atom; predicted_stable: True
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -184.4195 eV; energy change = -0.0193 eV; symmetry: Fmmm → Fmmm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -184.6088 eV; energy change = -0.0207 eV; symmetry: Amm2 → Amm2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -76.7651 eV; energy change = -0.0401 eV; symmetry: Imm2 → Imm2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -29.8209 eV; energy change = -0.0001 eV; symmetry: I4/mmm → I4/mmm
Fe3Ge (space group: I4/mmm #139, crystal system: tetragonal, point group: 4/mmm)
16 generated crystal structures for the chemical system Fe-Co-B
Phase diagram of Fe12Co4B3; e_above_hull: 1.230313 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -129.8927 eV; energy change = -16.1968 eV; symmetry: P4/mmm → P4/mmm
Fe12Co4B (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -145.9678 eV; energy change = -179.0220 eV; symmetry: P6/mmm → P1
Fe12Co6B (space group: P6/mmm #191, crystal system: hexagonal, point group: 6/mmm)
C9H8NO2 (space group: P1 #1, crystal system: triclinic, point group: 1)
C19H22N4O4S (space group: P1 #1, crystal system: triclinic, point group: 1)
Fe2O8Sr3Tl (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
FeNiCo (space group: P2/m #10, crystal system: monoclinic, point group: 2/m)
MgNiV (space group: P-1 #2, crystal system: triclinic, point group: -1)
4 generated crystal structures for the chemical system Fe-Co-Ni
16 generated crystal structures for the chemical system Fe-Co-Ni
Relaxed with Orb v3; 0.01 eV/Å threshold; final energy = -238.4837 eV; energy change = -6.1241 eV; symmetry: P1 → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -587.1338 eV; energy change = -21.7313 eV; symmetry: P-1 → P1
FeCoN (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -25.2010 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Fe2BiNi (space group: Pmmm #47, crystal system: orthorhombic, point group: mmm)
Phase diagram of FeCoNi; e_above_hull: 0.126083 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -21.1431 eV; energy change = -0.0228 eV; symmetry: P3m1 → P3m1
FeNiCo (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
Sweet pic I took recently. Testing out uploading a file from my phone now that Ouro is mobile friendly.
Phase diagram of FeCoNi; e_above_hull: 0.059214 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -85.3750 eV; energy change = -0.0007 eV; symmetry: Cmmm → Cmmm
Phase diagram of Fe4H; e_above_hull: 0.090332 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -36.6632 eV; energy change = 0.0000 eV; symmetry: P4/mmm → P4/mmm
8 generated crystal structures with magnetic density 0.15
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -145.2329 eV; energy change = -0.0072 eV; symmetry: Cmmm → Cmmm
16 generated crystal structures with magnetic density 0.03
Phase diagram of BaCaCu; e_above_hull: 0.153296 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Supercell 2x2x2 of BaCaCu (Space group: P3m1, 48 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -7.8531 eV; energy change = -0.0127 eV; symmetry: P3m1 → P3m1
BaCaCu (space group: P3m1 #156, crystal system: trigonal, point group: 3m)
FeCoN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Fe2Ni (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
FeNi (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
FeN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
FeN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
4 unique crystal structures for composition Cu6Sn3Se8
Relaxed with Orb v3; 0.0 eV/Å threshold; final energy = -308.6371 eV; energy change = -0.0525 eV; symmetry: P1 → P1
Relaxed with Orb v3; 0.001 eV/Å threshold; final energy = -308.6371 eV; energy change = -0.0524 eV; symmetry: P1 → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -308.5846 eV; energy change = 0.0000 eV; symmetry: P1 → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -308.5846 eV; energy change = -7.7361 eV; symmetry: P1 → P1
FeN (space group: P-6m2 #187, crystal system: hexagonal, point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -91.9866 eV; energy change = -3.2438 eV; symmetry: P321 → P1
Phase diagram of TiO2; e_above_hull: 2.410386 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -39.3731 eV; energy change = 0.0000 eV; symmetry: C2/m → C2/m
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phase diagram of Fe12BiS; e_above_hull: 1.045589 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -97.7807 eV; energy change = -6.6532 eV; symmetry: Pm-3 → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -95.6217 eV; energy change = -79.2177 eV; symmetry: Pm-3m → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -96.8643 eV; energy change = -0.3743 eV; symmetry: P6/mmm → Amm2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -109.4318 eV; energy change = -166.2588 eV; symmetry: P6mm → P1
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phase diagram of Fe14Bi4S; e_above_hull: 0.649003 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -126.4532 eV; energy change = -130.5614 eV; symmetry: P-43m → R3
Phase diagram of Fe14Bi4S; e_above_hull: 1.478221 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -110.6982 eV; energy change = 0.2880 eV; symmetry: Pm-3m → P4mm
Phase diagram of Fe14Bi4S; e_above_hull: 1.494607 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -110.3871 eV; energy change = -2.3680 eV; symmetry: Pm-3m → Pm-3m
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -92.0339 eV; energy change = -1.7104 eV; symmetry: Cm → Cm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -136.3847 eV; energy change = -4.2742 eV; symmetry: Amm2 → Pm
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -145.4401 eV; energy change = -24.6086 eV; symmetry: P6_3/mmc → P1
4 unique crystal structures for composition Fe14Bi2S
4 unique crystal structures for composition Fe12Bi2S
Fe14Bi2N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm)
Phase diagram of Fe5BiS; e_above_hull: 0.634744 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -139.1286 eV; energy change = -3.9090 eV; symmetry: Amm2 → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -93.5741 eV; energy change = -1.6122 eV; symmetry: Cm → Cm
Fe14Bi2S2 (space group: P1 #1, crystal system: triclinic, point group: 1)
Fe16Bi2S2 (space group: Amm2 #38, crystal system: orthorhombic, point group: mm2)
Fe10Bi2S2 (space group: Cm #8, crystal system: monoclinic, point group: m)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -218.3174 eV; energy change = -235.1183 eV; symmetry: P6_3/mmc → P1
Fe14Bi2N (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -125.6915 eV; energy change = -191.0446 eV; symmetry: P1 → P1
Fe14Bi2S (space group: P1 #1, crystal system: triclinic, point group: 1)
Phase diagram of Fe12Bi2S; e_above_hull: 0.546071 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -105.9565 eV; energy change = -1.5338 eV; symmetry: P4/mmm → Pmm2
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -89.2363 eV; energy change = -101.4257 eV; symmetry: P4/mmm → P1
Fe14Bi3S (space group: P1 #1, crystal system: triclinic, point group: 1)
Fe12Bi2S (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Fe10Bi2S (space group: P4/mmm #123, crystal system: tetragonal, point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -104.0685 eV; energy change = -9.7316 eV; symmetry: Amm2 → P1
Fe8Bi4N (space group: I-42d #122, crystal system: tetragonal, point group: -42m)
Fe12Bi2N2 (space group: P6_3/mmc #194, crystal system: hexagonal, point group: 6/mmm)
Fe10Bi2N2 (space group: Amm2 #38, crystal system: orthorhombic, point group: mm2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -54.9939 eV; energy change = -583.2341 eV; symmetry: Pnma → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -33.4362 eV; energy change = -0.7170 eV; symmetry: P1 → Cm
4 unique crystal structures for composition Fe3BiS2
Fe2BiS3 (Space group: Pnma #62, Crystal system: orthorhombic, Point group: mmm)
(Space group: Pnma #62, Crystal system: orthorhombic, Point group: mmm)
Phase diagram of FeBiS; e_above_hull: 0.458133 eV/atom; predicted_stable: False
FeBiS (Space group: P-6m2 #187, Crystal system: hexagonal, Point group: -6m2)
Phase diagram of FeBiS; e_above_hull: 0.490172 eV/atom; predicted_stable: False
Phase diagram of MnBi; e_above_hull: 0.434377 eV/atom; predicted_stable: False
mp-22878
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -30.8671 eV; energy change = 0.0000 eV; symmetry: Pmmm → Pmmm
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Water molecule (gas phase) in xyz format. Unequilibrated.
Phase diagram of Li2CO3; e_above_hull: 0.050900 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
2 unique crystal structures for composition Al2MgO
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phase diagram of TiO2; e_above_hull: 0.190601 eV/atom; predicted_stable: False
(Space group: P1 #1, Crystal system: triclinic, Point group: 1)
Supercell 3x3x3 of Fe4N (Space group: P4/mmm, 432 symmetry operations)
Phase diagram of Fe4N; e_above_hull: 0.095540 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -41.9630 eV; energy change = -0.0786 eV; symmetry: P4/mmm → P4/mmm
(Space group: P4/mmm #123, Crystal system: tetragonal, Point group: 4/mmm)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -169.4704 eV; energy change = -146.2408 eV; symmetry: P1 → P1
(Space group: P1 #1, Crystal system: triclinic, Point group: 1)
Phase diagram of Fe5N; e_above_hull: 0.179151 eV/atom; predicted_stable: False
(Space group: C2/m #12, Crystal system: monoclinic, Point group: 2/m)
Phase diagram of Fe3Ni; e_above_hull: 0.090971 eV/atom; predicted_stable: False
(Space group: Pmmm #47, Crystal system: orthorhombic, Point group: mmm)
(Space group: P4/mmm #123, Crystal system: tetragonal, Point group: 4/mmm)
Phase diagram of FeNi; e_above_hull: 0.000000 eV/atom; predicted_stable: True
FeNi (Space group: P4/mmm #123, Crystal system: tetragonal, Point group: 4/mmm)
2 unique crystal structures for composition FeNi
4 unique crystal structures for composition Fe12Bi2S
Phase diagram of Fe6N; e_above_hull: 0.272291 eV/atom; predicted_stable: False
Supercell 2x2x2 of Fe6N (Space group: P1, 8 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -114.7984 eV; energy change = -1.2879 eV; symmetry: P1 → P1
Phase diagram of Ba2YCu3O7; e_above_hull: 0.024753 eV/atom; predicted_stable: False
Supercell 2x2x2 of TiO2 (Space group: P-3m1, 96 symmetry operations)
Phase diagram of TiO2; e_above_hull: 0.190769 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -26.3454 eV; energy change = -0.0003 eV; symmetry: P-3m1 → P-3m1
(Space group: P-3m1 #164, Crystal system: trigonal, Point group: -3m)
This paper introduces a model, named Chemeleon, designed to generate chemical compositions and crystal structures by learning from both textual descriptions and three-dimensional structural data.
Phase diagram of Fe16N3; e_above_hull: 0.224104 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -144.1474 eV; energy change = -0.1651 eV; symmetry: I4/mmm → I4/mmm
Fe16N2 (Space group: I4/mmm #139, Crystal system: tetragonal, Point group: 4/mmm)
Phase diagram of Fe8N; e_above_hull: 0.317927 eV/atom; predicted_stable: False
Fe16N2 (Space group: I4/mmm #139, Crystal system: tetragonal, Point group: 4/mmm)
4 generated crystal structures for the chemical system Y-Ba-Cu-O
Phase diagram of TiO2; e_above_hull: 0.003695 eV/atom; predicted_stable: False
Phase diagram of Fe4Bi5S3; e_above_hull: 0.345894 eV/atom; predicted_stable: False
Phase diagram of Fe3GeH; e_above_hull: 0.015549 eV/atom; predicted_stable: False
Phase diagram of FeBiS2; e_above_hull: 0.136538 eV/atom; predicted_stable: False
Phase diagram of Fe3Ir; e_above_hull: 0.028427 eV/atom; predicted_stable: False
Relaxed with Orb v3; 0.01 eV/Å threshold; final energy = -107.6264 eV; energy change = -0.0026 eV; symmetry: I4_1/amd → I4_1/amd
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -107.6264 eV; energy change = -0.0026 eV; symmetry: I4_1/amd → I4_1/amd
Supercell 3x3x3 of Fe3GeH (Space group: Pm-3m, 1296 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -32.9520 eV; energy change = 0.0000 eV; symmetry: Pm-3m → Pm-3m
Supercell 3x3x3 of Fe3Ir (Space group: R-3m, 972 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -100.8543 eV; energy change = 0.0000 eV; symmetry: R-3m → R-3m
4 generated crystal structures with magnetic density 0.15
Supercell 4x4x4 of FeBiS2 (Space group: P2_1/m, 256 symmetry operations)
Supercell 2x2x2 of FeBiS2 (Space group: P2_1/m, 32 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -42.9355 eV; energy change = -0.1362 eV; symmetry: P2_1/m → P2_1/m
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -193.6525 eV; energy change = -0.7593 eV; symmetry: R3 → R3
Generated crystal structures for Fe-Bi-S - with corrected symmetry
MatterGen generated crystal structures for Fe-Bi-B - with corrected symmetry
(P1 symmetry - symmetry correction failed)
(P1 symmetry - symmetry correction failed)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -67.0941 eV; energy change = -0.0037 eV; symmetry: P1 → P1
Supercell 4x4x4 of NaCl (Space group: P-6m2, 768 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -6.6382 eV; energy change = 0.0000 eV; symmetry: P-6m2 → P-6m2
(Space group: P-6m2 #187, Crystal system: hexagonal, Point group: -6m2)
(Space group: P6/mmm #191, Crystal system: hexagonal, Point group: 6/mmm)
(Space group: P-6m2 #187, Crystal system: hexagonal, Point group: -6m2)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -149.8910 eV; energy change = -0.6824 eV; symmetry: P1 → P1
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -130.0506 eV; energy change = -0.1019 eV; symmetry: P1 → P1
Supercell 3x3x3 of Fe6Co2N (Space group: I4/mmm, 864 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -141.9409 eV; energy change = -0.5000 eV; symmetry: I4/mmm → Cm
Fe12Co4N2 (Space group: I4/mmm #139, Crystal system: tetragonal, Point group: 4/mmm)
Supercell 3x3x3 of Fe6Co2N (Space group: P1, 54 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -140.0058 eV; energy change = -15.5831 eV; symmetry: C2/m → P1
Supercell 4x4x4 of FeNi (Space group: P4/mmm, 1024 symmetry operations)
MatterGen generated crystal structures for Fe-Bi-S
Supercell 2x2x2 of Fe5Bi (Space group: P1, 8 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -43.3359 eV
MatterGen generated crystal structures for Fe-Bi-N
Supercell 2x2x2 of Fe13N5 (Space group: P1, 8 symmetry operations)
MatterGen generated crystal structures for Fe-N
Generated crystal structure for Fe-N
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -143.6773 eV
Supercell 2x2x2 of Ba2YCu3O7 (Space group: Pmmm, 64 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -79.7708 eV
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -125.0215 eV
Supercell 2x2x2 of Fe6N (Space group: Cm, 32 symmetry operations)
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -111.5653 eV
Supercell 2x2x2 of FeBiB (Space group: P-6m2, 96 symmetry operations)
Supercell 3x3x3 of CBiFe4S
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -44.2005 eV
Forecasts for Bitcoin Price with 12-period horizon
Forecasts for Oil Price with 12-period horizon
Forecasts for Gold Price with 12-period horizon
While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn–Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moiré twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible. This paper corresponds to HamGNN v1 and the universal model weights released in 2024. https://iopscience.iop.org/article/10.1088/0256-307X/41/7/077103
The accurate modeling of spin-orbit coupling (SOC) effects in diverse complex systems remains a significant challenge due to the high computational demands of density functional theory (DFT) and the limited transferability of existing machine-learning frameworks. This study addresses these limitations by introducing Uni-HamGNN, a universal SOC Hamiltonian graph neural network that is applicable across the periodic table. By decomposing the SOC Hamiltonian into spin-independent and SOC correction terms, our approach preserves SU(2) symmetry while significantly reducing parameter requirements. Based on this decomposition, we propose a delta-learning strategy to separately fit the two components, thereby addressing the training difficulties caused by magnitude discrepancies between them and enabling efficient training. The model achieves remarkable accuracy (mean absolute error of 0.0025 meV for the SOC-related component) and demonstrates broad applicability through high-throughput screening of the GNoME dataset for topological insulators, as well as precise predictions for 2D valleytronic materials and transition metal dichalcogenide (TMD) heterostructures. This breakthrough eliminates the need for system-specific retraining and costly SOC-DFT calculations, paving the way for rapid discovery of quantum materials.
~1900 materials collected from NovoMag and Novamag datasets, cleaned CSV with CIF file and MAE value
This paper describes the open Novamag database that has been developed for the design of novel Rare-Earth free/lean permanent magnets. The database software technologies, its friendly graphical user interface, advanced search tools and available data are explained in detail. Following the philosophy and standards of Materials Genome Initiative, it contains significant results of novel magnetic phases with high magnetocrystalline anisotropy obtained by three computational high-throughput screening approaches based on a crystal structure prediction method using an Adaptive Genetic Algorithm, tetragonally distortion of cubic phases and tuning known phases by doping.
This dataset includes 3819 materials scraped from https://magmat.herokuapp.com/, the Magnetic Materials Database. See https://www.novomag.physics.iastate.edu/structure-database for citations and more resources. I've cleaned the dataset to include the available magnetic materials (in CIF format) and their properties: magnetic_ordering, total_magnetic_moment [μ_B/cell], averaged_magnetic_moment [μ_B/atom], magnetic_polarization [T], formation_energy_(vs._elemental_phases) [meV/atom], formation_energy_above_hull [meV/atom], magnetic_curie_temperature [K], magnetic_anisotropy_constant,_k_^a-c [MJ/m^3], magnetic_easy_axis, magnetic_hardness_parameter,_κ, magnetic_anisotropy_constant,_k_^b-c [MJ/m^3], magnetic_anisotropy_constant,_k_^b-a [MJ/m^3], magnetic_anisotropy_constant,_k_^d-a [MJ/m^3]
A Computational High-Throughput Study Lorenzo A. Mariano, Vu Ha Anh Nguyen, Valerio Briganti, and Alessandro Lunghi Journal of the American Chemical Society 2024 146 (49), 34158-34166 DOI: 10.1021/jacs.4c14076
Interactive phase diagram showing stability of ZrFe12Si2B
Interactive phase diagram showing stability of ZrFe12Si2B
About 250mb when unzipped. Columns are mp-id and Orb v2 features of the material at ground state. Generated with https://github.com/ourofoundation/materials/blob/main/experiments/magnetism/dim-red/features_dataset.py
Forecasts for Gold Price with 52-period horizon
Forecasts for Bitcoin Price with 52-period horizon
, a ferrimagnetic material from Materials Project. https://next-gen.materialsproject.org/materials/mp-21666
CIF file for ZrFe12Si2B, a ferrimagnetic materials from Materials Project. https://next-gen.materialsproject.org/materials/mp-653838
This dataset has a set of 34,000 ferro/ferrimagnetic materials from Materials Project, their formula, if they include rare earth elements, magnetic moment, volume, magnetic density, a predicted Curie temperature, and cosine distances to some known permanent magnets like NdFeB. Distances are based on a 256 dimension embedding from Orb v2 latent space.
Forecasts for Gold Price with 52-period horizon
Forecasts for Copper Price with 52-period horizon
Observed and forecasted housing market data for April 2025. Includes monthly data and forecasts projecting 12 months into the future.
A 3D interactive scatter plot of magnetic materials from Materials Project. Points are colored by the materials estimated magnetic density and poitioned by UMAP reduction of Orb v2 model latent space
A collection of 5020 magnetic materials from Materials Project, with estimated magnetic density and predicted Curie temperatures.
Forecasted fred-cbbtcusd-festive-ride from 2025-04-12 to 2025-12-30
Dataset CBBTCUSD downloaded from fred: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Forecasted fred-cbbtcusd-tender-shirley from 2025-04-09 to 2025-12-30
Dataset CBBTCUSD downloaded from fred: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset CBBTCUSD downloaded from fred: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
This is a first draft of a compiled Curie temperature dataset mapping crystal structure (from Materials Project) to Curie temperature. Builds on the work of https://github.com/Songyosk/CurieML. Dataset includes ~6,800 unique materials representing 3,284 unique chemical families.
The crystal structure of a neodymium magnet. It is a permanent magnet made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. They are the most widely used type of rare-earth magnet.
Room-temperature ferromagnets are high-value targets for discovery given the ease by which they could be embedded within magnetic devices. However, the multitude of potential interactions among magnetic ions and their surrounding environments renders the prediction of thermally stable magnetic properties challenging. Therefore, it is vital to explore methods that can effectively screen potential candidates to expedite the discovery of novel ferromagnetic materials within highly intricate feature spaces. To this end, the authors explore machine-learning (ML) methods as a means to predict the Curie temperature (Tc) of ferromagnetic materials by discerning patterns within materials databases.
Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here the authors present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. They detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution.
Forecasted fred-cbbtcusd-nervous-feynman from 2025-03-14 to 2025-12-30
Dataset CBBTCUSD downloaded from fred: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Dataset BTC-USD downloaded from yfinance: 2020-01-01 to present
Generated image from "Crowded dance floor seen from above, with clusters of dancers all performing identical synchronized movements within their groups. The dance moves are visibly spreading from dancer to dancer like a wave, with clear boundaries between different dance styles." using DALL-E 3 from OpenAI.
Generated image from "A time-lapse of a stadium doing increasingly energetic waves. In the first frame, a perfect grid of glowing points shows almost perfect alignment. As the wave intensifies in subsequent frames, the points become increasingly chaotic and misaligned, eventually showing completely random orientations at the height of the wave's energy." using DALL-E 3 from OpenAI.
Generated image from "A bookshelf with various books - thin paperbacks laying flat, tall encyclopedias standing upright, and a few books precariously balanced on their edges or covers. An invisible force appears to be trying to rotate the books, with the encyclopedias strongly resisting the rotation while the paperbacks easily change orientation." using DALL-E 3 from OpenAI.
Generated image from "A political map showing a country divided into distinct districts, each colored either red or blue. Some areas show large unified blocks of a single color, while boundaries between differently colored regions are clearly visible. A giant hand is holding a magnet above the map, causing more districts to align to the same color" using DALL-E 3 from OpenAI.
Generated image from "Only visualize this idea. No text. Imagine a dance floor with a simple rule: dancers (electrons) with the same moves (spins) need more space between them due to social etiquette (Pauli exclusion principle). In ferromagnetic materials: When two dancers meet, it's energetically favorable for them to dance the same way (parallel spins) As one dancer starts doing a specific move, nearby dancers naturally follow along This creates "dance neighborhoods" (magnetic domains) where everyone is synchronized The "dance style" spreads from one dancer to the next - this propagation is the exchange interaction. Some dance floors (crystal structures) naturally encourage everyone to dance the same way, creating strong magnets." using DALL-E 3 from OpenAI.
Generated image from "A stadium filled with people, each holding a flashlight. In a magnet, something special happens - everyone agrees to point their flashlights in the same direction. Suddenly, that side of the stadium becomes brilliantly bright. This coordinated alignment is what creates a magnet's strength. Each flashlight is like an electron's magnetic moment, and when aligned, they create a powerful cumulative effect." using DALL-E 3 from OpenAI.
Generated image from "Imagine a stadium filled with people, each holding a flashlight. In normal materials, people are pointing their flashlights in random directions, so the overall stadium appears dim from above because the light is scattered in all directions." using DALL-E 3 from OpenAI.
This paper presents MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, the authors introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice.
This paper introduces LLaDA, a diffusion model trained from scratch under the pre-training and supervised finetuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens. https://arxiv.org/abs/2502.09992
Domains registered within days of this post. Not a dataset - just a wordlist
Here we showcase a few key latent features and their relationships to each other, points colored by their Tc. We animate from 0 K to ~130 K.
Superconductor candidates sampled at a target Tc of 130k
Generated image from "A hairy frog" using DALL-E 3 from OpenAI.
Generated model from an image using the StabilityAI API.
Generated image from "A marble sculpture of a human male with white background" using the StabilityAI API.
Evaluation results for the MatterGen fine-tuned model candidates, with new superconducting families labeled.
400 .cif files of candidate structures property condition generated by MatterGen where tc = 298.15K
3DSC dataset grouped by chemical composition, with Tc as our target. For use with MatterGen and the chemical system sampling.
Interactive plot of predicted vs. true Tc on the evaluation set.
Visualizing the counts of materials in the training and evaluation dataset by their Tc. First bin is non-superconductors, the rest are ranges of 20 K increments.
Using the 256 dimensional latent space output from the Orb model, we visualize the 3DSC(MP) dataset using UMAP with direction from Tc labels. Hover a point to see Tc, formula, and Material Project identifier.
Using the 256 dimensional latent space output from the Orb model, we visualize the 3DSC(MP) dataset using t-SNE and UMAP. The UMAP projection has been given the target for learning a manifold that keeps similar Tc materials close together.
Authors introduce Orb, a family of universal interatomic potentials for atomistic modeling of materials. Orb models are 3-6 times faster than existing universal potentials, stable under simulation for a range of out of distribution materials and, upon release, represented a 31% reduction in error over other methods on the Matbench Discovery benchmark. https://arxiv.org/abs/2410.22570
Authors present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. https://arxiv.org/abs/2405.04967
Not exactly the most rigorous test, but this side-by-side comparison shows the difference between running MD locally (M2 Macbook Air) and on a proper server (g4dn.2xl with T4 GPU). Each log is actually 100 simulation steps too.
Molecular dynamics simulation temperature ramping NaCl 3x3x3 supercell from 0 K to 300 K
Molecular dynamics simulation temperature ramping H2O 3x3x3 supercell from 0 K to 300 K
Simulating ice into water
https://next-gen.materialsproject.org/materials/mp-697111
Langevin temperature ramp over 10ps from 0 K to 300 K on a 3x3x3 supercell of NaCl
Langevin temperature ramp over 10ps from 0 K to 300 K on a 3x3x3 supercell of NaCl
https://next-gen.materialsproject.org/materials/mp-22851
Visualization created using .traj outputs of ASE MD simulation
Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. https://arxiv.org/abs/1601.00709
Tibetan-style vajra/dorje. Based on references from https://www.himalayanart.org/search/set.cfm?setID=563.
Authors make use of a new optical device to drive metallic K3C60 with mid-infrared pulses of tunable duration, ranging between one picosecond and one nanosecond. The same superconducting-like optical properties observed over short time windows for femtosecond excitation are shown here to become metastable under sustained optical driving, with lifetimes in excess of ten nanoseconds.
The study of superconductivity in compressed hydrides is of great interest due to measurements of high critical temperatures (Tc) in the vicinity of room temperature, beginning with the observations of LaH10 at 170-190 GPa. However, the pressures required for synthesis of these high Tc superconducting hydrides currently remain extremely high. Here we show the investigation of crystal structures and superconductivity in the La-B-H system under pressure with particle-swarm intelligence structure searches methods in combination with first-principles calculations. https://arxiv.org/abs/2107.02553
Realizing general inverse design could greatly accelerate the discovery of new materials with user-defined properties. However, state-of-the-art generative models tend to be limited to a specific composition or crystal structure. Herein, we present a framework capable of general inverse design (not limited to a given set of elements or crystal structures), featuring a generalized invertible representation that encodes crystals in both real and reciprocal space, and a property-structured latent space from a variational autoencoder (VAE). https://arxiv.org/abs/2005.07609
Here, we report a universal IAP for materials based on graph neural networks with three-body interactions (M3GNet). The M3GNet IAP was trained on the massive database of structural relaxations performed by the Materials Project over the past 10 years and has broad applications in structural relaxation, dynamic simulations and property prediction of materials across diverse chemical spaces. Chi Chen & Shyue Ping Ong https://www.nature.com/articles/s43588-022-00349-3 Preprint version from arXiv
This study employs the SuperCon dataset as the largest superconducting materials dataset. Then, we perform various data pre-processing steps to derive the clean DataG dataset, containing 13,022 compounds. In another stage of the study, we apply the novel CatBoost algorithm to predict the transition temperatures of novel superconducting materials. In addition, we developed a package called Jabir, which generates 322 atomic descriptors. We also designed an innovative hybrid method called the Soraya package to select the most critical features from the feature space. These yield R2 and RMSE values (0.952 and 6.45 K, respectively) superior to those previously reported in the literature. Finally, as a novel contribution to the field, a web application was designed for predicting and determining the Tc values of superconducting materials.
Data-driven methods, in particular machine learning, can help to speed up the discovery of new materials by finding hidden patterns in existing data and using them to identify promising candidate materials. In the case of superconductors, the use of data science tools is to date slowed down by a lack of accessible data. In this work, we present a new and publicly available superconductivity dataset (‘3DSC’), featuring the critical temperature Tc of superconducting materials additionally to tested non-superconductors.
For 4000 “low-Tc” superconductors (i.e., non-cuprate and non-iron-based), Tc is plotted vs. the a) average atomic weight, b) average covalent radius, and c) average number of d) valence electrons. Having low average atomic weight and low average number of d) valence electrons are necessary (but not sufficient) conditions for achieving high Tc in this group. d) Scatter plot of Tc for all known superconducting cuprates vs. the mean number of unfilled orbitals. c), d) suggest that the values of these predictors lead to hard limits on the maximum achievable Tc
a) Histogram of materials categorized by Tc (bin size is 2 K, only those with finite Tc are counted). Blue, green, and red denote low-Tc, iron-based, and cuprate superconductors, respectively. In the inset: histogram of materials categorized by ln(Tc) restricted to those with Tc > 10 K. b) Performance of different classification models as a function of the threshold temperature (Tsep) that separates materials in two classes by Tc. Performance is measured by accuracy (gray), precision (red), recall (blue), and F1 score (purple). The scores are calculated from predictions on an independent test set, i.e., one separate from the dataset used to train the model. In the inset: the dashed red curve gives the proportion of materials in the above-Tsep set. c) Accuracy, precision, recall, and F1 score as a function of the size of the training set with a fixed test set. d) Accuracy, precision, recall, and F1 as a function of the number of predictors
Superconductivity has been the focus of enormous research effort since its discovery more than a century ago. Yet, some features of this unique phenomenon remain poorly understood; prime among these is the connection between superconductivity and chemical/structural properties of materials. To bridge the gap, several machine learning schemes are developed herein to model the critical temperatures (Tc) of the 12,000+ known superconductors available via the SuperCon database. Materials are first divided into two classes based on their Tc values, above and below 10 K, and a classification model predicting this label is trained. The model uses coarse-grained features based only on the chemical compositions. It shows strong predictive power, with out-of-sample accuracy of about 92%. https://www.nature.com/articles/s41524-018-0085-8
Machine-learned force fields have transformed the atomistic modeling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials.
The 2nd generation of our atoms-in-molecules neural network potential (AIMNet2), which is applicable to species composed of up to 14 chemical elements in both neutral and charged states, making it a valuable method for modeling the majority of non-metallic compounds. Using an exhaustive dataset of 2 x 107 hybrid DFT level of theory quantum chemical calculations, AIMNet2 combines ML-parameterized short-range and physics-based long-range terms to attain generalizability that reaches from simple organics to diverse molecules with “exotic” element-organic bonding.
Here we present the Crystal Hamiltonian Graph Neural Network (CHGNet), a graph neural network-based machine-learning interatomic potential (MLIP) that models the universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory calculations of more than 1.5 million inorganic structures. https://www.nature.com/articles/s42256-023-00716-3
This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. https://www.nature.com/articles/s41467-022-29939-5
Training in 1.58b With No Gradient Memory. Preprint paper by wbrickner
Forecasted yfinance-btc-usd-quirky-hertz from 2024-12-22 to 2024-12-31
Dataset BTC-USD downloaded from yfinance: 2019-12-01 to present
Forecasted yfinance-btc-usd-sad-hopper from 2024-12-22 to 2024-12-31
Dataset BTC-USD downloaded from yfinance: 2019-01-01 to present
Forecasted yfinance-btc-usd-adoring-chandrasekhar from 2024-12-19 to 2024-12-31
Dataset BTC-USD downloaded from yfinance: 2019-01-01 to present