Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "048cdf0b-18c5-441b-8f67-8c35a39670b9"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -28.3771 eV; energy change = -0.0092 eV; symmetry: Pmm2 → Pmm2
Fe2CoAl (space group: Pmm2 #25, crystal system: orthorhombic, point group: mm2)
Supercell 3x3x3 of AlFe2Co (Space group: Pmm2, 108 symmetry operations)
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å)
Phase diagram of AlFe2Co; e_above_hull: 0.134595 eV/atom; predicted_stable: False
is a post describing the next steps after an initial pipeline run. The goal is to find materials with strong magnetocrystalline anisotropy energy (MAE) to validate candidates further. The text notes a model that predicts FePt around 3.07 meV and literature values for Nd2Fe14B near 2.9 meV per unit cell, suggesting values above about 2.5 meV are promising, since most materials have MAE below 0.1 meV. Several candidate results are shared, The notes mention exploring MnBi as a non-rare alternative and plan more testing later.