Discover datasets and files for materials science, chemistry, biology, and more.
Find data by format and modality
Most used assets this week
Find data for your field
Find data for your use case

2 items
Gathering or scraping data from various sources

2 items
Annotating data for supervised learning

2 items
Tasks related to training machine learning models
Common data formats
Recently added
A collection of 5020 magnetic materials from Materials Project, with estimated magnetic density and predicted Curie temperatures.
Dataset CBBTCUSD downloaded from fred: 2020-01-01 to present
Dataset CBBTCUSD downloaded from fred: 2020-01-01 to present
Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here the authors present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. They detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution.
Authors introduce Orb, a family of universal interatomic potentials for atomistic modeling of materials. Orb models are 3-6 times faster than existing universal potentials, stable under simulation for a range of out of distribution materials and, upon release, represented a 31% reduction in error over other methods on the Matbench Discovery benchmark. https://arxiv.org/abs/2410.22570
Authors present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. https://arxiv.org/abs/2405.04967
Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. https://arxiv.org/abs/1601.00709
Authors make use of a new optical device to drive metallic K3C60 with mid-infrared pulses of tunable duration, ranging between one picosecond and one nanosecond. The same superconducting-like optical properties observed over short time windows for femtosecond excitation are shown here to become metastable under sustained optical driving, with lifetimes in excess of ten nanoseconds.