Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "166bd937-9903-4795-8916-01be89c3d969"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)The study of superconductivity in compressed hydrides is of great interest due to measurements of high critical temperatures (Tc) in the vicinity of room temperature, beginning with the observations of LaH10 at 170-190 GPa. However, the pressures required for synthesis of these high Tc superconducting hydrides currently remain extremely high. Here we show the investigation of crystal structures and superconductivity in the La-B-H system under pressure with particle-swarm intelligence structure searches methods in combination with first-principles calculations.
https://arxiv.org/abs/2107.02553
This post will focus on the methods available to predict/derive of a material. We want to be able to build a pipeline where we can go beyond the available (and experimental) Tc data and train a model