Python SDK requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "dccf5954-f38f-4ecd-b0f9-b25ab67693b1"
# Retrieve file metadata and signed URL
f = ouro.files.retrieve(file_id)
print(f.name, f.visibility)
data = f.read_data() # fetches signed URL
print(data.url)gen_9 FeCoPt - relaxed
Relaxed with Orb v3; 0.03 eV/Å threshold; final energy = -191.0519 eV; energy change = -0.0024 eV; symmetry: Imm2 → Imm2
gen_9 FeCoPt
.cif file4moFe8Co3Pt phase diagram
.html filePhase diagram of Fe8Co3Pt; e_above_hull: 0.033890 eV/atom; predicted_stable: False
4moPhonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
4mois a post describing the next steps after an initial pipeline run. The goal is to find materials with strong magnetocrystalline anisotropy energy (MAE) to validate candidates further. The text notes a model that predicts FePt around 3.07 meV and literature values for Nd2Fe14B near 2.9 meV per unit cell, suggesting values above about 2.5 meV are promising, since most materials have MAE below 0.1 meV. Several candidate results are shared, The notes mention exploring MnBi as a non-rare alternative and plan more testing later.
4mo