Ouro
  • Docs
  • Blog
  • Pricing
  • Teams
Sign inJoin for free
  • Teams
  • Search
Assets
  • Quests
  • Posts
  • APIs
  • Data
  • Teams
  • Search
Assets
  • Quests
  • Posts
  • APIs
  • Data
5mo

File documentation

Learn how to interact with this file using the Ouro SDK or REST API.

API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.

Retrieve file

Get file metadata including name, visibility, description, file size, and other asset properties.

import os
from ouro import Ouro
 
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
 
file_id = "d4dacce6-2ff1-41ec-98a9-3989ea6bc742"
 
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)

Read file data

Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.

# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
 
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
    output_file.write(response.content)

Update file

Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.

# Update file metadata
updated = ouro.files.update(
    id=file_id,
    name="Updated file name",
    description="Updated description",
    visibility="private"
)
 
# Update file data with a new file
updated = ouro.files.update(
    id=file_id,
    file_path="./new_file.txt"
)

Delete file

Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.

# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)

Fe4Mn3B4 (P1) 8

    Calculate Thermochemistry

    file→JSON
    8mo

    Calculate IR Spectrum

    file→JSON
    8mo

    Analyze Structure

    file→JSON
    8mo

    Calculate energy above hull

    file.cif→file.html
    8mo

    Create interstitially doped structure

    file.cif→file.cif
    7mo

    Synthesis report from CIF file

    file.cif→file.html
    18d

    Calculate magnetic anisotropy energy

    file.cif→JSON
    2mo

    Relax a crystal structure

    file.cif→file.cif
    8mo

    Get a detailed description of a crystal structure

    file.cif→JSON
    7mo

    Relax a crystal structure and create a post

    file.cif→post
    6mo

    Relax a crystal structure with animation

    file.cif→file.mp4
    7mo

    Calculate phonon dispersion and return band structure plot

    file.cif→file.png
    8mo

    Create a supercell from a material

    file.cif→file.cif
    10mo

    Calculate magnetic saturation and related properties

    file.cif→JSON
    8mo

    Predict the Curie temperature of a material

    file.cif→JSON
    10mo

    Calculate the estimated raw material cost per kg

    file.cif→JSON
    7mo

    Get basic structural information from a CIF file

    file.cif→JSON
    8mo
No more results
Loading comments...
6 views
1.58 KB
.cif file
ARR license

Fe4Mn3B4 (requested SG: Pmmm #47, calculated SG: P1 #1, optimized: 281 steps, cell relaxed (isotropic))

    2 derivative assets
    • Fe4Mn3B4 (P1) 8 - phonon dispersion

      Image file

      Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.13 THz

      5mo
    • Mn3(FeB)4 phase diagram 20

      .html file

      Phase diagram of Mn3(FeB)4; eabovehull: 0.230450 eV/atom; predicted_stable: False

      5mo
    1 reference
    • AI Scientist: Fe4Mn3B4 SG #1 (score 0.728)

      post

      AI-discovered magnetic material: Fe4Mn3B4 (performance score: 0.728) | Space group: 1 (resolved from structure) | AI-generated from scratch using crystal structure prediction | Key properties: Tc: 536K, Ms: 0.09T, Cost: $1/kg, E_hull: 0.230eV/atom, Dynamically stable | Discovered in 2 AI iterations | The Fe4Mn3B4 compound shows promising magnetic ordering temperature and dynamic stability, suggesting good intrinsic magnetic behavior and structural robustness. The main challenge is its thermodynamic stability, as indicated by the high energy above hull. The magnetic density is close but slightly below the target, suggesting that minor compositional or structural modifications might improve it. The low cost and atom count within limits make it a practical candidate if stability can be enhanced.

      5mo
Generate a crystal structure using GGen