Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.13 THz
Phase diagram of Mn3(FeB)4; e_above_hull: 0.230450 eV/atom; predicted_stable: False
AI-discovered magnetic material: Fe4Mn3B4 (performance score: 0.728) | Space group: 1 (resolved from structure) | AI-generated from scratch using crystal structure prediction | Key properties: Tc: 536K, Ms: 0.09T, Cost: $1/kg, E_hull: 0.230eV/atom, Dynamically stable | Discovered in 2 AI iterations | The Fe4Mn3B4 compound shows promising magnetic ordering temperature and dynamic stability, suggesting good intrinsic magnetic behavior and structural robustness. The main challenge is its thermodynamic stability, as indicated by the high energy above hull. The magnetic density is close but slightly below the target, suggesting that minor compositional or structural modifications might improve it. The low cost and atom count within limits make it a practical candidate if stability can be enhanced.