Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. https://arxiv.org/abs/1601.00709
How this file is connected to other assets
Discover other files like this one
Superconductivity has been the focus of enormous research effort since its discovery more than a century ago. Yet, some features of this unique phenomenon remain poorly understood; prime among these is the connection between superconductivity and chemical/structural properties of materials. To bridge the gap, several machine learning schemes are developed herein to model the critical temperatures (Tc) of the 12,000+ known superconductors available via the SuperCon database. Materials are first divided into two classes based on their Tc values, above and below 10 K, and a classification model predicting this label is trained. The model uses coarse-grained features based only on the chemical compositions. It shows strong predictive power, with out-of-sample accuracy of about 92%. https://www.nature.com/articles/s41524-018-0085-8
Data-driven methods, in particular machine learning, can help to speed up the discovery of new materials by finding hidden patterns in existing data and using them to identify promising candidate materials. In the case of superconductors, the use of data science tools is to date slowed down by a lack of accessible data. In this work, we present a new and publicly available superconductivity dataset (‘3DSC’), featuring the critical temperature Tc of superconducting materials additionally to tested non-superconductors.
Phase diagrams (temperature versus chemical doping or pressure) for four classes of superconductors: hole-doped cuprates like YBa2Cu3O6+x (upper left) [26], κ-(ET)2Cu[N(CN)2]Cl, a 2D-organic (upper right) [27], heavy fermion CeRhIn5 (lower left) [28], and an iron pnictide, Co-doped BaFe2As2 (lower right) [29].
Visualizing predictions for a novel material in the Ba-Cu-F-Sr-O family, estimated to have at Tc of 113 K.