Phase diagram of Fe2B; eabovehull: 0.000000 eV/atom; predicted_stable: True
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -98.1402 eV; energy change = -113.4863 eV; symmetry: I4/mcm → I4/mcm
Crystal structure generated by GEPA optimization (iteration 8)
Phase diagram of MnAlC2; eabovehull: 5.778611 eV/atom; predicted_stable: False
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -8.7446 eV; energy change = 8.4724 eV; symmetry: P4/mmm → P1
Crystal structure generated by GEPA optimization (iteration 7)
Phase diagram of Fe5B2C; eabovehull: 0.258193 eV/atom; predicted_stable: False
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -258.5828 eV; energy change = -400.6006 eV; symmetry: I4/mcm → P1
Crystal structure generated by GEPA optimization (iteration 6)
Phase diagram of Mn16Al16C; eabovehull: 0.264068 eV/atom; predicted_stable: False
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -215.3125 eV; energy change = -1115.3602 eV; symmetry: P4/mmm → P1
Crystal structure generated by GEPA optimization (iteration 5)
Phase diagram of Mn16Al8C; eabovehull: 0.140492 eV/atom; predicted_stable: False
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -186.5671 eV; energy change = -554.6486 eV; symmetry: P4/mmm → P1
Crystal structure generated by GEPA optimization (iteration 4)
Phase diagram of Mn16Al16C; eabovehull: 0.222183 eV/atom; predicted_stable: False
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -216.6948 eV; energy change = -743.2758 eV; symmetry: P4/mmm → P1
Crystal structure generated by GEPA optimization (iteration 3)
Phase diagram of Mn8Al8C; eabovehull: 0.363531 eV/atom; predicted_stable: False
Cell + Ionic relaxation with Orb v3; 0.03 eV/Å threshold; final energy = -110.4407 eV; energy change = -38.0076 eV; symmetry: P4/m → P1