Create interstitially doped structure
Interstitial Doping is a tool that helps place extra atoms inside crystal structures. It uses a physics-informed approach to find likely interstitial sites with Voronoi tessellation, and then ranks these sites by how well they fit the dopant atom and how favorable the surrounding chemistry is. The method works in periodic crystals by expanding the cell into a small supercell, performing the analysis, and then mapping the results back to the original structure. It characterizes each potential site by void size, coordination, geometry, and nearby atoms, and it scores them to guide dopant placement. Dopants are added one by one while maintaining minimum distances to hosts and to other dopants. This is designed for fast, high‑throughput screening and does not perform energy calculations or structural relaxations; users should relax all structures with DFT afterward.
This interstitial doping implementation offers researchers a systematic, reproducible approach to generating initial doped structures.