Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "974834d0-d132-4761-befd-cad6550fdcd5"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)These plots show the RDF and coordination number plots of the first frame of a melt molecular dynamics run. Before the initial velocities are applied to the system, we have a perfect crystal.
is a post about running molecular dynamics simulations to study how a Cu-Zr alloy forms a metallic glass. The author uses a 64% Cu and 36% Zr composition, an (10,10,10) supercell, and the orb-v3-direct-20-omat calculator to push speed and scale. The workflow includes equilibrating a melted alloy at high temperature, then rapid quenching from 2000 K to 300 K at various rates to compare glass formation versus crystallization. The write-up explains key concepts like what glass is in atomic terms, the difference between crystalline order and amorphous structure, and how RDF and coordination numbers help analyze results. It also notes the challenges of achieving crystallization in MD due to time scales and suggests exploring different cooling rates and compositions in future runs. The post includes example data and 3D visualization references to support the findings.