RDF and coordination number plots of CuNi crystal after equilibration melt for 10ps at 1800 K
This asset shows two plots for a CuNi crystal after a 10 picosecond melt equilibration at 1800 K. The left plot is the total radial distribution function (RDF) versus distance, with a strong first peak near 2 Å and several smaller peaks up to about 8–9 Å, suggesting some remaining order from the original lattice. The right plot shows the coordination number (CN) as a function of distance, which increases gradually and reaches around 350 by 10 Å. The note indicates that even at about 9 Å away, there is still a signal of another atom, meaning remnants of the supercell lattice persist in the melted state.
Simulating Metallic Glass Formation with Orb-v3
postis a post about running molecular dynamics simulations to study how a Cu-Zr alloy forms a metallic glass. The author uses a 64% Cu and 36% Zr composition, an (10,10,10) supercell, and the orb-v3-direct-20-omat calculator to push speed and scale. The workflow includes equilibrating a melted alloy at high temperature, then rapid quenching from 2000 K to 300 K at various rates to compare glass formation versus crystallization. The write-up explains key concepts like what glass is in atomic terms, the difference between crystalline order and amorphous structure, and how RDF and coordination numbers help analyze results. It also notes the challenges of achieving crystallization in MD due to time scales and suggests exploring different cooling rates and compositions in future runs. The post includes example data and 3D visualization references to support the findings.
6d