Orb-v3 paper
The authors introduce Orb-v3, the next generation of the Orb family of universal interatomic potentials. Models in this family expand the performance-speed-memory Pareto frontier, offering near SoTA performance across a range of evaluations with a ≥ 10× reduction in latency and ≥ 8× reduction in memory. Their experiments systematically traverse this frontier, charting the trade-off induced by roto-equivariance, conservatism and graph sparsity. Contrary to recent literature, they find that non-equivariant, non-conservative architectures can accurately model physical properties, including those which require higher-order derivatives of the potential energy surface.
explains how to pick from eight Orb-v3 models that balance accuracy, speed, and memory for atomistic simulations. The post breaks down model names (orb-v3-X-Y-Z), where X is how forces are computed, Y is neighbor limits, and Z is the training dataset (omat or mpa). It compares conservative vs direct force calculations, unlimited vs limited neighbors, and AIMD-based -omat versus MPTraj/Alexandria-based -mpa models. Readers gain practical guidance for phonon calculations, geometry optimization, and molecular dynamics, including which models excel at energy conservation, speed, or large-scale simulations. The piece also covers workflow tips, performance at scale, and licensing (Apache 2.0). Use this guide to choose the right Orb-v3 model for your system size and research goals.
18dMeso-scale all-atom simulations with Orb-v3 open a new frontier in materials science and chemistry. This post discusses using ASE for molecular dynamics on GPUs (A100, H100, H200) via Modal, enabling larger, more affordable simulations than traditional DFT. It highlights metallic glass formation, crystallization, annealing, and emergent phenomena that arise from thousands of atoms. The focus is on a breakthrough in non-conservative architectures that balance memory use and speed, making complex systems feasible to study.
19d