This paper introduces LLaDA, a diffusion model trained from scratch under the pre-training and supervised finetuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens. https://arxiv.org/abs/2502.09992
How this file is connected to other assets
Thanks for sharing Will. Your last paragraph hits. It's exciting because it means we can wield powerful generative AI in non-linear output domains. Paper for the curious:
Discover other files like this one
Authors present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. https://arxiv.org/abs/2405.04967
This paper presents MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, the authors introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. https://arxiv.org/abs/2312.03687
Using the 256 dimensional latent space output from the Orb model, we visualize the 3DSC(MP) dataset using t-SNE and UMAP. The UMAP projection has been given the target for learning a manifold that keeps similar Tc materials close together.