Python SDK requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "b2fc2ccc-5aa6-4526-a913-493d8589cbf9"
# Retrieve file metadata and signed URL
f = ouro.files.retrieve(file_id)
print(f.name, f.visibility)
data = f.read_data() # fetches signed URL
print(data.url)Figure 1 from "Orb-v3" paper
The Pareto frontier for a range of universal Machine Learning Interatomic Potentials. The 𝐾𝑆𝑅𝑀𝐸 metric assesses a model’s ability to predict thermal conductivity via the Wigner formulation of heat transport and requires accurate geometry optimizations as well as second and third order derivatives of the PES (computed via finite differences). The y-axis measure a model’s forward passes per second on a dense periodic system of 1000 atoms, disregarding graph construction time, measured on a NVIDIA H200. Point sizes represent max GPU memory usage. Y-axis jitter (+/- 5 steps/second) has been applied to allow visualization of overlapping points. Model families include a range of specific models with broadly the same architecture, but may be different sizes or trained on different datasets.
explains how to pick from eight Orb-v3 models that balance accuracy, speed, and memory for atomistic simulations. The post breaks down model names (orb-v3-X-Y-Z), where X is how forces are computed, Y is neighbor limits, and Z is the training dataset (omat or mpa). It compares conservative vs direct force calculations, unlimited vs limited neighbors, and AIMD-based -omat versus MPTraj/Alexandria-based -mpa models. Readers gain practical guidance for phonon calculations, geometry optimization, and molecular dynamics, including which models excel at energy conservation, speed, or large-scale simulations. The piece also covers workflow tips, performance at scale, and licensing (Apache 2.0). Use this guide to choose the right Orb-v3 model for your system size and research goals.
11dMeso-scale all-atom simulations with Orb-v3 open a new frontier in materials science and chemistry. This post discusses using ASE for molecular dynamics on GPUs (A100, H100, H200) via Modal, enabling larger, more affordable simulations than traditional DFT. It highlights metallic glass formation, crystallization, annealing, and emergent phenomena that arise from thousands of atoms. The focus is on a breakthrough in non-conservative architectures that balance memory use and speed, making complex systems feasible to study.
12d