Realizing general inverse design could greatly accelerate the discovery of new materials with user-defined properties. However, state-of-the-art generative models tend to be limited to a specific composition or crystal structure. Herein, we present a framework capable of general inverse design (not limited to a given set of elements or crystal structures), featuring a generalized invertible representation that encodes crystals in both real and reciprocal space, and a property-structured latent space from a variational autoencoder (VAE). https://arxiv.org/abs/2005.07609
M3GNet seems like a pretty popular MLIP model. Depending on the pipeline we build out, we may want to increase throughput with a model that can help us with MD and electronics predictions.