Connections
How this file is connected to other assets
Similar files
Discover other files like this one
MatterGen paper
This paper presents MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, the authors introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. https://arxiv.org/abs/2312.03687
Isotropic scaling vs. latent space response
Measuring the impact scaling the crystal lattice has on different select latent features.
Materials Design for New Superconductors
Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. https://arxiv.org/abs/1601.00709
A foundation model for atomistic materials chemistry
Machine-learned force fields have transformed the atomistic modeling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials.