Realizing general inverse design could greatly accelerate the discovery of new materials with user-defined properties. However, state-of-the-art generative models tend to be limited to a specific composition or crystal structure. Herein, we present a framework capable of general inverse design (not limited to a given set of elements or crystal structures), featuring a generalized invertible representation that encodes crystals in both real and reciprocal space, and a property-structured latent space from a variational autoencoder (VAE). https://arxiv.org/abs/2005.07609
How this file is connected to other assets
M3GNet seems like a pretty popular MLIP model. Depending on the pipeline we build out, we may want to increase throughput with a model that can help us with MD and electronics predictions.
Discover other files like this one
Machine-learned force fields have transformed the atomistic modeling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials.
This paper presents MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, the authors introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. https://arxiv.org/abs/2312.03687
Measuring the impact scaling the crystal lattice has on different select latent features.