Machine-learned force fields have transformed the atomistic modeling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials.
How this file is connected to other assets
https://github.com/mir-group/nequip
Discover other files like this one
Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here the authors present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. They detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution. https://iopscience.iop.org/article/10.1088/0953-8984/26/10/103202/meta
Authors present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. https://arxiv.org/abs/2405.04967
This paper presents MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, the authors introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. https://arxiv.org/abs/2312.03687