Below is a “from‑scratch” permanent‑magnet concept that stitches together the best lessons from tetragonal Fe‑Co physics, rapid ordering tricks, and exchange‑spring nanocomposites. I kept every element earth‑abundant, readily recyclable, and friendly to mass‑production metallurgy.
Target | Value | Rationale |
---|---|---|
Uniaxial anisotropy | ≥ 1 MJ m⁻³ | at least ferrite‑class coercivity |
Saturation induction | ≥ 2 T | push remanence beyond 1.5 T |
(BH) | 30 – 40 MGOe | close the gap to Nd‑Fe‑B mid‑grade grades |
Curie temperature | ≥ 550 °C | EV‑motor safe margin |
No critical elements | Fe, Co, V, N, B, Cu | price < $ 10 kg⁻¹ |
FeCoVNB Body‑centred tetragonal Fe‑Co‑V‑N (c/a ≈ 1.22)
V + N stabilise the bct lattice and lock in even in 100 nm films and bulk foils.
Pure bct‑FeCo is predicted to rival or exceed FePt’s anisotropy while carrying 50 % more magnetisation.
Fe‑Co‑B (bcc) shells 3–5 nm thick around each hard grain
Give an extra 0.4–0.5 T to through exchange‑spring coupling.
B lowers grain‑boundary mobility, freezing grain size near 20 nm.
Cu/VC nano‑precipitates (<2 vol %) form during aging and immobilise domain walls.
Induction melt Fe‑Co‑V master alloy, over‑doped with 0.5 wt % B.
Gas‑atomise into ≤ 30 µm powder; high quench rate preserves metastable bct nuclei.
Reactive nitriding: NH flow, 450 °C, 30 min → N uptake, full tetragonality.
Surfactant‑assisted ball mill 2 h → 15–25 nm crystallites.
Spark‑plasma sinter + 2 T field: 550 °C, 5 min → dense, c‑axes aligned bulk.
Age 400 °C, 1 h → Cu/VC precipitates and stress relief.
Passivate (phosphate dip or Al 99.5 % vacuum coating).
Every step is conventional powder‑metallurgy equipment; cycle time < 2 h.
Parameter | Estimate | How we get there |
---|---|---|
2.0 – 2.1 T | bct Fe‑Co base + 30 % soft phase | |
1.2 – 1.5 MJ m⁻³ | V + N tetragonality | |
0.9 – 1.1 T | single‑domain grains ≈ 20 nm + precipitate pinning | |
1.5 – 1.7 T | exchange‑spring boost | |
(BH) | 32 – 40 MGOe | micromagnetic modelling & scaling law from nanocomposites |
~900 K | high‑FeCo matrix |
That slots the alloy squarely between MnAlC (≈8 MGOe) and today’s mid‑range Nd‑Fe‑B (35–45 MGOe)—without Dy, Nd or Sm.
Element | Job |
---|---|
Fe + Co | delivers the world‑record saturation magnetisation of FeCo |
V | expands the c‑axis and helps lock the bct lattice |
N (interstitial) | amplifies tetragonality and Ku while slightly boosting resistivity |
B | glass‑former; refines grains; bumps resistivity; part of soft shell |
Cu | forms nanoscale precipitates that immobilise domain walls without diluting Ms |
XRD (Cu Kα) to confirm c/a > 1.2 after nitriding.
TEM + EELS grain‑size and phase mapping.
VSM loops @ 300 K for & .
Pulsed‑field testing to 10 T for irreversible field.
High‑T ageing (up to 200 °C for 1000 h) to benchmark thermal demagnetisation.
If loops match the table above, scale gas‑atomisation to 50 kg lots and feed existing powder‑bed fusion printers for net‑shape motor rotors.
data_HyperionX_bct
_symmetry_space_group_name_H-M 'I 4/mmm'
_symmetry_Int_Tables_number 139
# ----------------------------------------------------------------------
# Lattice parameters (metastable bct Fe‑Co‑V‑N‑B)
# ----------------------------------------------------------------------
_cell_length_a 2.850
_cell_length_b 2.850
_cell_length_c 3.480
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
# ----------------------------------------------------------------------
# Symmetry operations (standard for I4/mmm)
# ----------------------------------------------------------------------
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, -y, z'
'-y, x, z+1/2'
' y, -x, z+1/2'
'x, y, -z'
'-x, -y, -z'
'-y, x, -z+1/2'
' y, -x, -z+1/2'
# ----------------------------------------------------------------------
# Atom sites with mixed occupancies
# ----------------------------------------------------------------------
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Fe_M1 Fe 0.000 0.000 0.000 0.275 # 2a site (mixed Fe/Co/V total occ = 1.0)
Co_M1 Co 0.000 0.000 0.000 0.150
V_M1 V 0.000 0.000 0.000 0.035
Fe_M2 Fe 0.000 0.000 0.500 0.275 # 2b site
Co_M2 Co 0.000 0.000 0.500 0.150
V_M2 V 0.000 0.000 0.500 0.035
N_I1 N 0.000 0.500 0.250 0.030 # 4d interstitials (light elements)
B_I1 B 0.000 0.500 0.250 0.050
N_I2 N 0.500 0.000 0.250 0.030
B_I2 B 0.500 0.000 0.250 0.050
N_I3 N 0.000 0.500 0.750 0.030
B_I3 B 0.000 0.500 0.750 0.050
N_I4 N 0.500 0.000 0.750 0.030
B_I4 B 0.500 0.000 0.750 0.050
A tetragonal Fe‑Co‑V‑N hard phase exchange‑coupled to Fe‑Co‑B soft shells should hit ~35 MGOe with nothing rarer than vanadium, survive 500 °C, and roll straight off a powder‑metallurgy line. That’s a permanent magnet worth chasing—and far more promising than cubic Fe(B,C) or W‑doped variants.
Discover other posts like this one
Rare-earth elements earned their place in permanent magnets because the large atomic spin-orbit coupling (SOC) of the 4 f shell turns exchange energy into a hefty magnetocrystalline anisotropy (MAE).
Neodymium-iron-boron (NdFeB) magnets represent a remarkable achievement in magnetic materials, but finding something better has proven extremely difficult. Here's why:
Sharing some notes as I go through this paper: